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Stellingen behorende bij het proefschrift van Felix Hess:
Boomerangs, aerodynamics and motion.

1‘

Wetenschappelijk onderzoek aan de aerodynamica van helicopger

rotors vormt een duidelijke bijdrage tot. de technologlsche
wapenwed loop. ’

Bij de in de dragende-vlak theorie gebruikelijke collocatie methode
mag men niet verwachten dat, bij toenemend aantal termen in de
reeksontw1kke11ng van de 1ift functie en toenemend aantal collo-
catie punten in koorde richting, de oplossing convergeert naar

een lift verdeling die voldoet aan de Kutta voorwaarde.

Als het in dit proefschrift ontwikkelde boemerang model wordt
vereenvoudigd door de geinduceerde snelheid van de lucht te

verwaarlozen, kunnen er toch nog redell]ke boemerang banen mee
worden berekend.

Beschouw een-lxchaam dat bestaat uit een rechte, dunne, hdmogene
staaf die in het midden geknikt is over een hoek a (0 < a < w).
Zij m de massa en I het grootste hoofdtraagheldsmoment van dit

lichaam, en a de afstand van de uiteinden van het lichaam tot het
massa middelpunt. Dan is I = 13--ma2

De waarneming en beschrijving van boemerangs door volkenkundigen
is soms op onjuiste wijze beinvloed door informatie afkomstig
van natuurkundigen. . . '

. . . R S L e
Er 21Jn ethnocentrzsche tri kken aanwezig in een groot deel van
de bestaande literatuur. onr de oorsprong van boemerangs.

4 o : e

De kans op een windstille zZomernacht in noord-oost Nederland is

.groter na een dag met westeiljke wind dan na een dag met .

oostelijke wind.

Men kan twee stipjes op een treinruit aanbrengen zodanig dat men
ze waarneemt als &&n stip die in het landschap met de trein mee-
beweegt op een afstand S van bijv. 100 3 200 meter. Bij het
passeren van objecten zoals huizen en bomengroepen op een afstand
aanmerkelijk kleiner dan S, ziet men de stip plotseling naderbij
komen, rakelings v66r het passerende object langs gaan en weer
terugkeren tot zijn oude positie. (Deze observatie stemt overeen
met de opmerking van Ogle: "... it is to be expected that in
those surroundings that have been artificially produced to provide
a conflict between stereoscopic stimuli and empirical factors,
the meaningless stimuli may be suppressed by the meaningful,

that is, by the perceptions from the empirical motives for
depth."” [K.N. Ogle: "Theory of stereoscopic vision." in: S. Koch,

ed. "Psychology: a study of science." (McGraw-Hill, New York,
1959) p. 362-3941.)
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De beeldscherpte van een fototoestel met open diafragma, dat
is ingesteld volgens de aangegeven afstandsschaal, kan worden
verbeterd door de afstandsinstelling te wijzigen.

De verslaggeving in kranten van verkeersongevallen waarbij een
rijdende auto en een lopend kind betrokken zijn is doorgaans
niet alleen eenzijdig, maar draagt bovendien bij tot de besten-
diging van de bestaande verkeersonveiligheid.

Bij het totstandkomen van de schilderijen van Han Jansen speelt
sinds 1973 de zwaartekracht een essentiéele rol.

Een-half-bolvormige wollen muts kan spiraalsgewijs worden gehaakt
als volgt. Stel R = de straal 'van de halve bol, h = de hoogte
van de haaksteek, t = het aantal toeren, gerekend vanaf de

kruin. Begin bij de kruin, en meerder telkens &én steek op de
n(c) steken, waarbij

n(t) as% tg &

Ga zo..door *otdat t N-E% en hecht af.

De veel voorkomende mening dat leervakken of wetenschappelijke
disciplines "moeilijker" zijn naarmate ze exacter zijn berust
vaak'ep een onderschatting van de complex1te1t van de problemen

Het geschatte aantal door intelligente wezens bewoonde planeten
buiten ons zonnestelsel zal vooralsnog blijven toenemen.

Dit is een stelling.
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9. De beeldscherpte.van een fototoestel met open diafragma, dat
is ingesteld volgens de aangegeven afstandsschaal, kan worden
verbeterd door de afstandsinstelling te wijzigen.

10. De verslaggeving in kranten van verkeersongevallen waarbij een
rijdende auto en een lopend kind betrokken zijn is doorgaans
niet alleen eenzijdig, maar draagt bovendien bij tot de besten-
diging van de bestaande verkeersonveiligheid.

11. Bij het totstandkomen van de schilderijen van Han Jansen speelt
'sinds 1973 de zwaartekracht een essentiéle rol.

12. Een half-bolvormige wollen muts kan spiraalsgewijs worden gehaakt
als volgt. Stel R = de straal 'van de halve bol, h = de hoogte
van de haaksteek, t = het aantal toeren, gerekend vanaf de

kruin. Begin bij de kruin, en meerder telkens &&n steek op de
n(t) steken, waarbij
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Ga zo door *otdat t N-%% en hecht af.

13. De veel voorkomende mening dat leervakken of wetenschappelijke
disciplines "moeilijker" zijn naarmate ze exacter zijn berust
vaak op een onderschatting van de complexiteit van de problemen
waarmee minder exacte vakken zich bezighouden.

14. Het geschatte aantal door intelligente wezens bewoonde planeten
buiten ons zonnestelsel zal vooralsnog blijven toenemen.

15. Dit is een stelling.



Théorémes de la thése de Felix Hess: Boomerangs, aerodynamics and motion.

1) La recherche concernant I'aerodynamique des rotors d'hélicopter contribue
largement a la course aux armements.

2) Dans le cas ol on augmente les termes d'une progression de la fonction de
montée et les points de collocation dans la direction de corde, la méthode de
collocation, utilisée habituellement dans la théorie de la surface portante, n'a pas
comme conséquence une distribution de montée qui remplisse la condition de
Kutta.

3) On peut simplifier le modéle de boomerang développé dans cette thése en
supposant que la vitesse d'introduction de I'air soit negligeable. Les trajectoires de
boomerang calculés ainsi sont encore assez correctes.

4) 1 = 1/3 ma2 pour un corps qui est constitué d'une barre droite, mince et

homogene, fléchie au milieu (angle entre 0 et n). m est la masse, | le moment
principal de lenteur du corps et a la distance entre les extrémes du corps et le milieu
de la masse.

5) L'observation et la description de boomerangs par les anthropologues a parfois
été influencée d'une fagon incorrecte par l'information de la part de physiciens.

8) Une grande partie de la littérature traitant I'origine des boomerangs comporte des
éléments ethnocentriques. '

7) Les chances d'une nuit d'été sans vent dans le nord-est des Pays-Bas sont plus
grandes aprés une journée de vent d'ouest qu'aprés une journée de vent d'est.

8) Deux points peuvent étre dessinés sur un vitre de train de tel fagon que Il'oeil les
pergoit comme un point qui avance avec le train & une distance S de 100 - 200
métres. En passant des objets (maisons, groupements d'arbres etc.) qui se trouvent
a une distance nettement inférieure a S, on voit le point s'approcher soudainement,
frélant I'objet pour retourner ensuite & I'ancienne position. Cette observation
concorde avec la remarque de M. Ogle: ".... it is to be expected that in those
surroundings that have been artificially produced to provide a conflict between
stereoscopic stimuli and empirical factors, the meaningless stimuli may be
suppressed by the meaningful, that is, by the perceptions from the empirical motives
for depth.” (K.N. Ogle: Theory of stereoscopic vision. in S. Koch, ed "Psychology: a
study of science." (McGraw-Hill, New York, 1959) p. 362-394).

9) La netteté de I'image d'un appareil photo a diaphragme ouvert, mise au point
selon I'échelle indiquée sur I'appareil, peut étre amélioré en changeant la distance.



10) Les reportages dans la presse sur les accidents de la route impliquant une
voiture roulante et un enfant a pied sont généralement pas seulement partials mais
contribuent en plus a la confirmation du sentiment d'insécurité routiére existant.

11) Depuis 1973, la gravitation joue un réle essentiel & la réalisation des peintures
de Han Jansen.

12) Un bonnet mi-sphére peut étre crocheté en spiral comme suit. Prenons R = le
rayon du demi sphére, h = la hauteur de la maille, t = le nombre de tours comptés du

sommet de la téte. Commencez au sommet de la téte et ajoutez un crochet tous les
n(t) crochets quand:

n(t) = approx. R/ *tg (ht/R)

Continuez jusqu'a t = approx. ®R /oy, et fixez.

13) L'opinion courante qui consiste & penser que les disciplines (scientifiques) sont
plus "difficiles” si elles sont plus exactes est souvent fondée sur la sousestimation
de la complexité des problémes dont s'occupent les disciplines moins exactes.

14) Les estimations du nombre de planétes hors de notre systéme solaire habitées
par des étres intelligents continuera d'augmenter pour le moment.

15) Ceci est un théoréme.
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The narrative may interest you. I found an open space behind a pile
of lumber. I looked all about. I was alone. I determined to make

a light throw at first, and the first thing that astonished me

was the comparatively enormous distance that it travelled upon

a slight impulse. Its weight was less than two ounces, and yet it
went over 200 feet away. It rose swiftly in the air, whirling and
flashing in the sunlight, and, as I thought,.extremely beautiful in
the graceful ease of its motions. And could I believe my eyes!

Yes! It was coming back. It fell within a yard or two of my féet.

I picked it up, fully as delighted as ever that black savage could
have been who stumbled upon its first discovery, and became a
blessing to his race.

[Emerson, 1893, p. 87]



PREFACE

§1. A study of boomerangs.

The evolutions which a boomerang is capable of are bewildering, and
at first it seems that there could be no possible solution for the:
extraordinary gyrations it makes; yet in time these become quite
clear. [Pern, 1928, p. 102].

Studying the mechanics of retﬁrning boomerangs is not different from
most other scientific work. But whereas many scientists cannot
communicate about the subject of their intense interest with more
than a few fellow specialists, the student of boomerangs is in a
rather different position, and fortunately so. It is not often
nowadays that a subject of scientific research appeals to so many
people outside science: anyone who has heard about boomerangs or has
seen a boomerang fly and return may feel exactly that curiosity and

need for explanation which are at the heart of most scientific work.

Admittedly, this research on boomerangs is probably not characteristic
of modern science. The physical principles underlying the boomerang S
behaviour have been known for several generations, and part of my A
work could have been done by others many years ago. For those who in
the past turned their attention to the boomerang problem it was
usually a pastime, and in the fifty years preceding 1968 hardly

any scientific éttention at all was paid to boomerangs. Obviously
boomerangs are found in an out-of-the-way corner of science rather
than in one of its main corridors: the increase of knowledge on the
flight of boomerangs may leave the rest of science unchanged. Yet

the subject of boomerangs is not quite isolated from all other fields
of science; connections with "more serious" topics are unmistakable.
The aerodynamics of hellcopter rotors is an obvious example. Some of
the methods used in this work are similar to those employed elsewhere
in aero- and hydrodynamics. It is open to discussion whether this
should be considered as an argument in favour of the usefulness of

my work. Often the applications of this branch of science fit in

a military context, and too often it is taken for granted that such

. fields of researth must be further developed.
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The boomerang puzzle is not deep, but it is complex. One must first
formalize and reduce it to a problem in applied mathematics, and then
find a solution which can be interpreted in terms of physical reality.
The complementary part of the boomerang problem invoives the design
and execution of experiments. But at the very start the main point is

to decide what is essential and what can be disregarded.

About ten years ago in the corridors of the physics lab in Groningen,
talking with Herman Coster, I suddenly saw how bodmerangs can return.
(Some people had seen this before, which I did not.know). I worked
out an extremely simple mathematical model, for which Lanbrecht Kok
wrote an Algol program. Rather excited, we plotted by hand the first
computed boomerang flight path: it returned! Soon I saw that my
equations of motion were those of a spherical pendulum. I tried to
improve the model, working on it for one week:every two months- or

so. At that time I.still made and threw boomerangs just for fun.
Working on a boomerang theory was a pastime too, and so were the
first experiments with illuminated boomerﬁngs.in 1967. This stage of
the boomerang work definitively ended with the pdblication of the
Scientific American article in 1968. By then I had finished my
physics study and had started working with Sparenberg at the.
Department of Applied Mathematics. Boomerangs had become an official

subject of study.

First a mathematical model for the aerodynamic forces on boomerangs
had to be developed. The basic idea was conceived.quickly, but it
took three and a half years to work it out and make it produce
numerical results. This was highly technical work. The experiments
were more diversified as regards the level of sophistication. For
instance, there were three weeks of hard laboratory work in Delft
with a brand-new wind tunnel and a lot of electronic eqdipment.

In contrast, the boomerang-throwing experiments near Steenwijk were
carried out in a pastoral setting; Here a piece of grassland
surrounded by trees played the role of a laboratory, and the
eﬁuipment'gould be transported by bicycle: homemade boomerangs and

wind meters, two cameras, an aluminium ladder, batteries, tiny light

11



bulbs, a 50m tape measure, two fishing rods, pieces of iron wire, etc.

In the evening twilight of a summer night Herman C and I can be seen
pushing a perambulator loaded with the above equipment to a place
underneath the branches of an oak tree: the origin of our coordinate
system. The wind meters are carefully put on top of the fishing rods.
A very light breeze makes them spin against the evening sky. (If only
the wind would vanish!) Ten field lights are put in their proper
positions just above the grass, reminding one of a miniature airfield.
Herman installs the cameras while I check the boomerangs. In the
meantime it has become dark enough for the experiments to start. Soon
a boomerang flies through the air, a whirling trace of light. At
fifty metres distance Herman operates the cameras, jots down the

wind conditions and shouts directions to prevent me from throwing

the boomerang outside the cameras®' field of vision. Occasionally we
exchange batteries or a light bulb in the boomerang, or adjust one

of the field lights. On some nights the sky is cloudy, on others a
multitude of stars can be seen. On all nights the grass is very wet.
Herman's feet get cold and my left arm becomes tired. Now and then we
eat a biscuit and drink a draft of water. On a good night we record
over one hundred boomerang flights.(On bad nights, we sit and wait
for the wind to vanish, and record none.) When the sky begins to
brighten, we disassemble the equipment, put the smaller parts into our
suitcase, load everything on the pram, and walk to a little summer
house for a few hours sleep.

A substantial part of the boomerang work was neither theoretical nor
experimental: it consisted of writing programs and making errors,
punching chards and waiting for the automatic plotter to draw

computed lift distributions or boomerang flight paths.

Such matters are mentioned hardly or not at all in the three Parts
of this report on an investigation into the behaviour of returning
boomerangs. Part I presents general information on boomerangs. It
contains an ethnographic chapter as well as an elementary explanation
of the return flight of boomerangs. It also includes an extensive
bibliography. The main research work is reported in the other two
Parts. Part II deals with the forces acting on flying boomerangs, i.e.
with boomerang aerodynamics. The motion of boomerangs is treated in
Part III, which also contains many pictures of theoretical and
experimental boomerang flight paths. Both the aerodynamics and the
motion of boomerangs have been investigated by means of theoretical
models as well as by experiments. Hence, in the boomefang research

project four divisions can be distinguished, as indicated in the

12



following scheme:

theory experiments
aerodynamics winglet wind tunnel
Part II model measurements
motion flight path | field
Part III calculations | experiments

Each Part begins with an introductory section in which an outline is
given of its contents and it ends with a list of references.~The
Parts have their own numbering of chapters and sections. In the text
references are indicated by square brackets. The stereograms of
boomerang flight paths can be viewed with the aid of the stereo

viewer inserted at the back cover.
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§2. What is new and what is missing?

Here we give a brief summary of original features of the investigations

as well as suggestions for further research on boomerangs.

Part I contains almost no new material. The study of literature on
which the ethnographic chapter is based indicates that earlier
ethnographers have not observed and reported the flight of Australian
Aboriginal boomerangs very accurately. Unfortunately it is too late
now to remedy this omission. It is still possible to take detailed
measurements of the shapes and mass distributions of Aboriginal
boomerangs, with special attention to their aerodynamic properties.

A fact too little recognised is that the shape of the cross sections
can be more essential to a boomerang's flight than the precise shape

of its platform.

' Part II, theory. An aerodynamic boomerang model is developed in which
the induced velocity of the air is taken into account. Technically
speaking: our so-called winglet model is a linearized pervious lifting
surface theory. The modified, semi-linear version of this model can
accomodate boomerang arms with non-linear profile lift and drag
characteristics (e.g. stall can be taken into account). This model

can give no information about the variations of the aerodynamic

forces during one spin period of the boomerang. It might be worthwile
to develop an unsteady lifting line theory for boomerangs, or adapt

an existing theory of this kind to boomerangs. Such a theory should

preferably not be restricted to boomerang arms with linear profile

lift characteristics.

Part II, experiments. Chapter VI reports measurements of all six
force and torque components (averaged over time) acting on rotating
boomerangs in a wind tunnel. This appears to be the first instance
in which aerodynamic forces on boomerangs have been measured at all.
The scientific_inﬁerest of these experiments may lie in the fact
that the local Reynolds numbers of the boomerang arms varied between

0 and 105. (Helicopters operate at much higher Reynolds numbers. )
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I know of no other measurements of forces acting on rotating wings

in a non-axial flow at low Reynolds numbers. The boomerangs used in
the experiments were handmade and did not have precisely specified
crosé sections. The relation between a boomerang's detailed shape

and its aerodynamic properties is not obvious. The only investigation
I have made concerning this question was done with single boomerangv.
arms in a straight steady airflow (Ch.VI, §26). However, the results
(e.g. with respect to stall) apparently are not valid for rotating
boomerangs. It would be very interesting tO’invesfigate the influence
of the shape of the cross sections on the aerodynamic forces acting

on a rotating boomerang.

" Part III, theory. The equations of motion for boomerangs, which

are derived in Chapter I, are "smoothed": variationé of physical
quantities within one spin period are disregarded by this model.

The equations seem to yield satisfactory results, but under one
important condition: the boomerang's motion must be stable. It would
be of interest to investigate the conditions for the stability of

a boomerang's motion. In Chapters III and IV a large number of
theoretical flight paths are presented, computed and plotted in
great detail.

-

Part III, experiments. The Chapters II and III deal with experiments
in which a lot of boomerang flight paths were recorded: A built-in -
clock and two cameras were used, so that, in principle, the boomerang's
position as a function of time could be determined. A fundamental
weakness in these experiments is that the initial conditions of the
flights are not precisely known. For better field experiments the
development of an accurate boomerang-throwing machine would be
essential. On the other hand, one need not héve access to laboratories
or computers in order to contribute to the knowledge on boomerangs.
Serious hobbyists mighi obtain significant results by experimenting

with carefully made boomerangs of precisely knoﬁn shapes.

15



§3. Acknowledgements.

I am grateful to many people who contributed to the work which is
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Three series of 1abbratory experiments have been carried out. The
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of Technology Delft by Ir. M.C. Meijer and Mr. A. Goeman. The object
of these measurements was to check the theoretical results of the
winglet model. The second series of experiments concerned boomerangs.
in a straight airflow. The measurements were carried out in December
1970 at the Twente University of Technology with the help and advice
of Mr. G.H.M. ter Bogt and Dr.Ir. H.J. van Oord. My wife Wietske
assisted me in operating the small wind tunnel. The third and most
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Christmas 1971, again in Delft. Forces on rotating boomerangs were
measured in a wind tunnel of the Laboratory for Aero- and Hydrodynamics.
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by the Shipbuilding Laboratory. Ir. M.C. Meijer offered a lot of
expert advice. Mr. A. Goeman worked with unbelieQable diligence and
accuracy, operating the electronics and writing down thousands of
numbers. Some equipment for each'of the three series of experiments
was made in the workshop of the Laboratory for General Physics in
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equipment. His combination of technical insight and fundamental
thinking can be recognized in such features as the tetrahedral

frames and the phosphorbronze wires of the measuring apparatus

used in the wind tunnel experiments (Part II, §27).
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The field experiments in which boomerang flight paths were photo-
graphically recorded took place near Steenwijk in the summer

of 1973. Herman Coster operated the cameras, manufactured the
surprisingly simple field lights, suggested the needie—on—glass
bearings for the wind meters and designed the "time pill".

(Part III, §11). This is a tiny electronic device serving as a
clock, we put it together in three weeks of very careful work.
One of the cameras was kindly lent by Bob Kaper. Hans Rollema and

Wietske assisted me in some earlier field experiments.

The ethnographic Chapter in Part I is w?itten by a layman: I am
not a cultural anthropologist. It was fortunate that several
Australian anthropologists answered my letters and offered me useful
suggestions. Especially Mr. Frederick D. McCarthy (Sydney) and v
Dr. A.C. van der Leeden (Nijmegen) gave me valuable advice. Much
information on the prehistoric Velsen boomerang was given by its
finder, Mr. A.J. Schotman of the Royal Dutch Blast Furnaces and
Steelworks. Mr. B.A.L. Cranstone of the British Museum (London)
 kindly helped me to investigate an Australian cross boomerang.
Many articles on boomerangs were brought to my attention by

Mr. Benjamin Ruhe of the Smithsonian Institution (Washington,D.C.).
Probably thére is no boomerang activity anywhere in the world

without Ben Ruhe knowing about it.

The way from scientific curiosity to scientific report is a long
one. An essential role in much of the boomerang work was played by
electronic computers.(Once addicted to their use, one cannot do
without them.) In the course of seven years many theoretical
boomerangs were computed and numerous flight paths plotted, first

on the TR4 and more recently on the Cyber 74-16. The people of the
Computing Center of the Groningen University always offered expert
assistance in a supple way. The Photographic and Audiovisual Depart-
ments of the university have processed an amazing amount of photo-
graphs and drawings. One difficult photographic job was done by

Mr. H. Leertouwer of the physics lab.
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Greet Boerema typed nearly all of the manuscript. Many of the drawings
were made by Bob Kooi. Jos Hess assembled the stereo photographs.
Frank Venema printed a text on the stereo viewers. In the final

hectic weeks Trientje Stuit and Trudy Klosse assisted in the typework,
Bob K. drew lines and numbers .during "afternoons'" which ended at 10

P.m., and Jos H.,Berber W. and Wietske pasted in hundreds of illus-
trations.

-

Prof. Sparenberg critically read all of the manuscript. Prof.Dr.H.de
Waard carefﬁlly read the experimental chapters. Mr. F.D.McCarthy and

Dr. A.C. van der Leeden kindly read the ethnographic chapter.

The work reported in Part II, Chapter I through IV was financially
supported by the Netherlands Organization for the Advancement of
Pure Research, Z.W.O.

There are still others who contributed to the pleasure of studying
boomerangs. In June 1973 Herman and I visited Dr. Peter Musgrove

at the University of Reading (England). We exchanged a lot of
information about boomerangs‘with Peter and witnessed the boomerang
launcher built by his students. There we met Allan Grantham who
gave me a particularly good left-handed boomerang of his own make,
Vivian Davies, the egyptologist from Oxford who informed me about
Tut Ankh Amen's boomerangs, and Major.Christopher‘Robinson, the

secretary of the Society for the Promotion and Avoidance of Boomerangs.

Dr. E. Whittaker (Dapto. N.S.W. Australia) sent me a beautiful
left-handed Aboriginal boomerang, which can return perfectly.

Mr. Willi Urban (Leutershausen, Germany) sent me his excellent
"come back", and wisely warned me against attempting to write a
doctor's thesis on boomerangs. Dr. Russell B. Snyder (Eldorado,
Kansas) wrote many a cordial letter and especially made me nearly a
dozen left-handed boomerangs. Mr. Herb A. Smith (Arundel, Sussex)
made me two lefﬁ-handed very-long-distance boomerangs and ‘supplied
a sketch of his record boomerang throw. Then there are Claude Zeyen
(Luxembourg) ,Gordon Rayner (San Diego, Calif.), Dr. Lorin Hawes

(Mudgeeraba, Queensl. Austr.), Roger Luebbers (Canberra, Auétr.) and
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many others with whom I have exchanged information on boomerangs.

The seven years spent on this project have been much more than I had
expected to be necessary for learning "all about boomerangs".

But still I do not know such things as: how to make a boomerang
' that with little effort can be thrown extremely far and return
perfectly without the help of wind. ' v

Groningen, May 1975,

- felix el
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PART I
GENERAL

So far the civilized uses of this ethnological curiosity have
been confined to abstruse mathematical calculations of its
complicated movements, while it furnishes a dangerous plaything
for mischievous school-boys.
: ' [Parry, 1872, p. 400]
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§1. Introduction

Part I of this workK contains a great deal of background information
on boomerangs, but presénts little new material. Chapter I gives
information related to ethnography,-culturalranthropology and
archaeology. This chapter deals with such questions as: Where,
inside and outside Australia, have boomerangs been found? How are
boomerangs manufactured and used by the Australian Aborigines, and
for what purpdses? Nearly all of the information collected by me

on these topics is based on literature rather than on own observ-
ations. It is second-hand knowledge the validity of which entirely
depends on the selection and the quality of the sources used.

The choice of the topics, with a strong emphasis on the aspects of
boomerangs most directly related to their physical properties, - '
reflects of course, my own Background in physics and mathematics.
Such matters as the more general cultural functioning of boomerangs
in Aboriginal Australia are barely mentioned. Within these limitations
Chapter I offers a fairly complete survey of what is known at present
about boomerangs in cultures other than the "modern western

civilisation."

Chapter II gives information related to mechanics, physics and
“;athematics. It presents an explanation at an elementary level

of the return flight of boomerangs, and provides the reader with

a basic understanding of the mechanics and aerodynamics of boomerangs.
A short survey is given of the physical and mathematical research

on boomerangs from 1837 up to 1975.

Finally, Chapter III consists of an extensive bibliography on
boomerangs, which contains nearly 400 items. The nature and subject
matter of each item is indicated. Though certainly incomplete, this

probably is the most comprehensive bibliography on boomerangs to date.
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CHAPTER 1

BOOMERANGS FROM AN ETHNOGRAPHICAL VIEWPOINT.

§2 Various types of Australian boomerangs.

As is well known, boomerangs are used and manufactured by the Australian
Aborigines. The term "boomerang" generally is rather vaguely‘defined: a
wooden object which can be thrown in such a way that it rotates rapidly
and, by its interaction with the air, traverses a flight path which

differs considerably from that of an ordinary thrown stick.

-This curious' and unique weapon, about: which so much-has. been written - -
and so little is really known, is a curved piece of wood, slightly con-.
vex on one side'and nearly.flat on the.other. It is cut from a natural
bend or root of a tree, the hardest and heaviest wood being always
selected, and its curve follows the: grain of the wood. Thus it will

vary from a slight curve to nearly a right angle; no two ever being the
same shape. It is about three-eights of an inch [1 em.] thick, and from
two to three inches [5-7} cm.] wide, tapering toward the ends, which are
either round or pointed. The edge is sharpened all around, and the

length varies from fifteen inches to three and a half feet (40 ecm.-1 m.].
[Baker, 1890, p. 375]. . -

Most Australian boomerangs do not return to the thrower. According to
Davidson [1935b, p. 163]: '

Of the popular fallacies associated with the boomerang perhaps the most
widespread and deep-rooted is the belief that all boomerangs are of the
returning type. As a matter of fact, returning boomerangs constitute
only a very small percentage of Australian boomerangs, a percentage dif-
ficult to estimate accurately but which under normal aboriginal condi-
tions may have been exceedingly small.

Non-returning boomerangs, also called war, fighting or hunting boomer=

angs, can fly along a more or less straight horizontal line for long

distances, and strike an object, prey or enemy with amazing force. Ac-
cording to Blackman [1903, p. 48]:

The war boomerang is an effective and dangerous weapon, having a range
of 150 yds. [140 m.], and having been known to pass completely through

an adversary when the body was first struck by the point of the weapon.

Returning boomerangs are mainly used for play; Davidson [1935b, p. 163/4]
says: v ‘
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It is also generally believed that the returning boomerang is a weapon
and that it is used in war and for hunting. These functions, however,
with few exceptions, are found associated only with ordinary boomerangs.
The returning boomerang is regarded by the aborigines as a toy to be
thrown for amusement. In only a few instances are there reports that it
is used for other purposes, although in emergencies it may be utilized
as a weapon in the same manner as any other suitable object. .

Davidson [1935b, p. 164] continues:

It is likewise important to understand that the returning boomerang,
contrary to popular belief, will not return to the thrower if it strikes
any object during its flight. In most cases such a happening would cause
it to fall directly to the ground. Occasionally if an obstacle is not
struck squarely, the stick may be deflected and started on a different
course of flight, but in such an event, the point of landing would be
altered. The common belief, therefore, that the boomerang will return
to the hand of the thrower after it has struck the enemy or the prey

has no basis .in fact.

In addition to returning and non-returning boomerangs the:Australian.

Ab&gzgihézruse also a great variety of other wooden throwing or striking
implemeﬁts, ranging from straight sticks-and-clubs to boomerang-like: .
objects with one very broad, flat end, called Lil-lil [Fby,'19l3; David-
son, 1936; Smyth, 1878; Etheridge, 1897b; Sarg, 1911], and there is a
multitude of intermediate forms. As to the variations in boomerangs
Davidson [1935b, p. 165/6] remarks: » »

Boomerangs vary so much in their forms, sizes and weights that it is a
difficult matter to classify them into types and varieties. Some are
symmetrical in form, others have one arm longer than the other. In many
specimens the width is fairly constant throughout the greater part of
the weapon, in others it is relatively great at the bend and may de-
crease gradually or abruptly as the ends are approached. The degree of
curvature also shows much variation and may range from a right angle or
less to almost 180°. For the shape of cross-section, we find some ex-
amples thin and wafer-like, whereas others may be almost round, or in
those specimens having one flat surface, almost hemispherical. The ex-
‘tremities run the gamut from round to pointed, and in addition there
are several varieties of specialized ends with angular or other fea-
tures which set them off from the more usual forms. Finally there is
the question of a longitudinal twist, a feature necessary to the re-
turning boomerangs but also one occasionally found to a slighter degree
and perhaps accidentally in those not intended for use as playthings.
When all these variable features are taken into consideration it is
clear that the number of combinations is infinite and that it is a most
difficult matter to describe the differences between the boomerangs of
many regions of the continent. There is no one feature sufficiently
constant to serve as a standard. :
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fig. 2.1 Planforms of some returning boomerangs. After [McCarthy,

1957, p. 801.

a: Fitzroy river, Western Australia. b: Murchison river district,

Western Australia. c: eastern New South Wales. d: King Sound, Western
Australia. e: Kimberleys, Western Australia. f: Western Australia.

g: Kimberleys, Western Australia.
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fig. 2.2 Planforms of some non-returning boomerangs. After [McCarthy,
1957, p. 78]

a: Cloncurry, Queensland. b: Bogan river, New South Wales.
c: Central Australia. d: Rockhampton, Queensland.

e: Northern Territory, hooked boomerang.

It is often difficult to determine whether a particular boomerang is of

the returning kind or not, by just inspecting its shape. To make matters

more complicated:

There are many left-handed native boomerangs. These, when thrown with

the right hand, often go straight away, and do not return. [Pern,v1928,
p. 103].

Thus, according to Smyth [1878, p. 318]:

One can easily imagine the perplexity of an enquirer who should have a
number of these instruments presented to him, some left~hand, some
right-hand, and some apparently of the like form, but not made to
return. His experiments with them would but embarrass him the more;

and if he succeeded in throwing one weapon successfully again and again,
he might conclude that his want of success with the others was due sole-
ly to their imperfections.
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McCdrthy [1957, p. 97] says about returning boomerangs:

They are usually similar in style to the local non-returning forms but
are smaller, thinner, and more deeply curved. '

Roth [1897, p. 1281, referring to North West Central Queensland, states:

The "Come-back" or "Return" Boomerang [...] is a toywhich, compared with
a fighting boomerang, is always lighter, much smaller, and varies in
shape from a comparatively strong angle to something approaching a half-

moon, the knee or bend being always in the centre. Sometimes it is cut

down from one of the other kinds of boomerang that has been damaged or
broken.

Smyth [1878, p. 317], comparing boomerangs from Victoria, says:

The most obvious difference of form between the boomerang which returns

and that which does not return is in the curve, looking at the flat side
of the weapon [...]. The Wonguim [returning] exhibits almost invariably

a much sharper curve than the Barn-geet [non-returningl; ...

A Wonguim including an angle as sharp .as 70° between”itS'arms-iS'repre-
sented in [Sarg, 1911, p. 12].

Howitt [1876, p. 248], also writing about Victoria, reports:

Iwo kinds of boomerang are made, one called "marndwullun wunkun," that
is the "boomerang," as I may translate the term "wunkun," which turns
round; "marndwullun" is equally applied to the returning flight of a
bird as to a boomerang. The second kind of boomerang is called
"tootgundy wunkun," that is the boomerang which goes straight on,
"toot" meaning something "straight" or "erect."

The. two boomerangs differ in their construction. The second (straight)
kind being thicker, longer, and less curved than the first, I shall
call, as a matter of convenience, the "marndwullun" No. I, and the
"tootgundy" No. 2. :

With No. 1 there is no certainty of hitting the mark. It may come back
too quickly, and may hit your own friends standing near you. In choosing

a boomerang like No. 2, in preference, it will be more sure to hit the
object, ...

McCarthy [1957, p. 88] gives the following descriptions:

The non-returning boomerang is a crescent from two to three feet [60-
Y0 cm.] long, possessing a shallow curve in relation to its length,

and weighing up to one and a half pounds [700 g.]. [...]

The returning boomerang is a much smaller weapon than the fighting type.
It is a thin and well-balanced missile from one to two feet six inches
[30-75 cm.] long and up to twelve ounces [350 g.] in weight.

Cf. [Smyth, 1878, p. 311]:

The weight of these weapons varies from four ounces to ten and a half
ounces [110-300 g.]. Those as light as four ounces are rarely used in
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Victoria, but such light weapons seem to be much in favor in Western
Australia.

McCarthy [1957, p. 88] continues:

It is always deeply curved, and some specimens have two distinct arms
with a sharply angled bend. Both sides may be convex or one convex and
the other flat. The weapon's outstanding characteristic is that one end
is twisted upwards and the other downwards from front to back, in a con-
tra manner. This is usually done by soaking in water and then heating
over a large fire or in hot ashes until it is pliable enough to twist.

This twist is considered essential to the return behaviour of boomerangs

by many authors, and we will consider this question in §4.

Intermediate types, between returning and non-returning boomerangs, ap-

parently also exist. According to McCarthy [1957, p. 97]:

Several types of boomerang, notably the Xaili plano-convex Mulga wood
type of Western Australia, and the bou-ma-rang (as it was originally .
‘named from the Turuwal language on the George's river, near Sydney); a
bi-convex mangrove wood type from eastern New South Wales, probably
served as dual types, being heavy enough for use as hunting and fighting
boomerangs, and not too big to serve as returning boomerangs. The twist
could be added or eliminated at any time, as the occasion necessitated.

A special type‘of boomerang is the hooked, horned, beaked or swan-necked

boomerang (see fig. 2.2e). It is described by Roth [1897, p. 145/6] as
follows:

It differs from the fluted boomerang in the possession of a hook [..],
from 4 to 5 inches [10-13 cm.] long projecting backwards, in the same
plane, from the extremity of the shaft on the convex edge: this hook,
about an inch [2} cm.] or more wide at its base, tapers gradually to a
blunt point, and bears a longitudinal fluting continuous with that on
the main shaft. Furthermore, the shape of the shaft contrasts markedly
with that of all other boomerangs in its width, independently of the
bend or knee (not its widest part), increasing progressively from the
proximal to the hooked extremity.

Balfour [1901, p. 33] describes an unusual variety from MacArthur River:

Instead of being cut out of a single piece of wood specially selected
for the purpose, as is the case with the swan-necked boomerang as
usually seen [..], this example has been apparently made from an ordi-
nary boomerang having but slight curvature, and the spur at the end is
formed by fixing with gum a flat piece of wood to the boomerang head.
The spur is painted in red and white patterns, and the boomerang is

coated with red ochre. The spur is protected with a sheath of melaleuca
bark. The hook-like spur is 6} inches (16} cm.] long.
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The function of the hook seems uncertain. McCarthy [1961, p. 348] gives

as his opinion:

The hooked or swan-necked variety of the fluted boomerang in the North-
ern Territory is a well-balanced boomerang. It is said that the hook
catches on the edge of a shield or spearthrower.(used for parrying)

and the shaft whips round and strikes the defender. This action could
not be very dangerous, and I believe that the hook forms a pick for
fighting at close quarters, like the stone-bladed pick in this region.

A peculiar form of boomerang is used as a toy in the region around

Cairns (Queensland). An early discription of it is given by Roth [1902a,
p. 513]1=[1902b, P- 19]:

The "Cross” is made of two pointed laths, from about 8 to 10 or more
inches [20-25 cm.] long, drilled at their centres and fixed cross-wise
in position with split lawyer-cane [...]. It is met with in the coastal
districts extending from Cardwell to the Mossman, and to the Mallanpara
blacks of the Tully is known as pirbu-pirbu..

fig. 2.3 (copied from [Kaudern, 1929, pP. 236]) Cross boomerangs.
B from Queensland, A from Celebes.

Bl, Al sections in spanwise direction.

B2, A2 cross sections in chordwise direction.
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Kaudern [1929, p. 236/7) describes such a cross boomerang in connection

with a similar one from Celebes (see also §9):

This cross is made from some light wood of light colour. The limbs are
respectively 36,5 cm. and 36 cm. by 4 cm. They are only 5 mm. thick.
‘The ends are rounded off and the limbs all round trimmed down to an
edge. The outside of the limbs is slightly convex, the inside concave
similarly to the boomerang from Ondae [Celebes]. The limbs are lashed
together with a strip of rattan in the same way as the Ondae cross
[...]. In the Australian boomerang two of the limbs are palnted with
red, one is black and one is white.

It is remarkable that with both the Celebes and the Que;hsland cross
boomerang described by Kaudern the limbs are fasteﬁed with the concave
sides against one another. This can be clearly seen in the accompanying
illustration (fig. 2.3). Thus one limb ﬁould be aerodynamically upside
down during flight, which would seem to have adverse effects on a boom-
erang's flying behaviour. None of the other references I could find in
the literature contains information on cross sections of the limbs of
cross boomerangs. The one cross boomerang I scrutinized (see fig. 2.4)

has limbs with symmetrical biconvex cross sections, and without twist.

Cross boomerangs can return quite well:

..., thrown direct into the air, theicqurse of flight is simiiﬁrvto the
boomerang, but there is mote of the circle than the oval, and a double
circle round the player at its termination. [Roth, 1902, p. 513].

Perni[l928,.p. 101] relates:

1 have some toy boomerangs [...], which came from the Cardwell district,
south of Cairns. They are of various shapes, and amongst them is one
made by crossing two pieces of reed. These cross ‘boomerangs, when thrown
at the right angle and height, will return, but have not the same live-
liness of flight as have the others. Cur1ously enough, they will go

equally as well with one or even two bladés off, as long as they are at
right angles to one another. AT

A variety is mentioned by Roth [1905#, p. 513] = [1902b, p. 19]:

The above toy is imitated by some of the smaller children by means of
thick swamp-grass, &c. The two strips are either pierced and tied, as
in the case of the wooden ones, or else plaited together [...]. It is

thrown with a twist of the wrist up into the a1r, whence it soon returns
in a right or left spiral. :

Pictures of cross boomerangs are given by Davidson [1937, ﬁ. 28] (copied

in [Guiart, 1948, p. 30]), Sarg [1911, p. 13], Kaudern [1929, p. 236],
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Kennedy (1949, p.21], McConnel [1935, P.62,67], Cranstone [1973, p.16].

Australian boomerangs can be decorated by painting and by incising. A
detailed account of the decorations of boomerangs is given by Davidson
(1937, p. 18-28]. Since our main interest in boomerangs. concerns the
mechanical and aerodynamic properties, the decorations may be left out
of consideration here, except for one point. The fluting (parallel
grooves) on the convex side of the fluted boomerang might be aerodynam-
ically relevant. Hlllyer (1909, »p. 256] suggests:

The flut1ngs, like the furrows on a golf ball, are to make the boomerang
"bite" the air

Indeed the fluting might reduce the air resistance of the boomerang
arms. See also $4.

fig. 2.4 Cairns cross boomerang. (Museum of Mankind, British Museum)
Shown from the other side in [Cranstone, 1973, p. 16]. Roughly chipped
from light wood. Weight: 73.5 g. Length of limbs: 37.2 resp. 36.4 cm.,

greatest width: 4.1 resp. 4.5 cm. Thickness: between 0.8 and 1.1 cm.

Thickness/chord fairly constant: 0.23-0.26. Biconvex symmetr1ca1 pro-

files. Measured and photographed w1thpermlssun1oer. B.A.L. Cranstone.
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§3 Distribution of boomerangs in Australia.

The best source of information on the distribution of boomerangs in
Australia appears to be Davidson [1936], who also gives quite some ref-

erences. According to him [1936, p. 88-901]:

Boomerangs, as a class, are W1de1y distributed in Australla but are not
continental. It is important to note that they are lacking in Tasmania
and in all the northern peninsulas of Australia, the Kimberley coastal
country, Groote Island, and North Australia approximately north of a
line drawn from the Katherine River to the Roper River, and in Cape York
peninsula, north of the Mitchell and Palmer Rivers [...]. There are also
a few minor districts in which they seem to be unknown. '

For example, Tindale [1925, p. 99] mentions about the Ingura on Groote
Eylandt:

The boomerang [...] 1s known to them only from exaggerated rumours of -
their wunderful killing power.

As regards the distribution of returnlng boomerangs Dav1dson (1936,

p 97] gives the following account:

Returning boomerangs are w1de1y d1stributed but are not found in all
regions in which the ordinary forms appear [...]. There seems to be

no indication that the returning kind is ever present by itself. The
major regions in which returners are or were used include at least parts
of Victoria, New South Wales, Queensland, South Australia, and Western
Australia. The main negatlve area, aside from those in which no boom-
erangs at all are present, is the Central Australia-North Australia
reglon. We thus find that returning boomerangs, like incised boomerangs,
occupy. an area which almost surrounds an area in:which they are not
used, but where the so-called "fighting" boomerang is present. Since
the latter is definitely known to be diffusing outward into areas where
the former is now found, the question arises as to whether returning
boomerangs formerly occupied a wider distribution in a part of the
region in which we now notice only the so—called flghtlng type. This
question cannot be answered at present. @ :

According to McCarthy (personal communlcatlon, 1974) an aspect worth
con51der1ng is: '

- the boomerang in trade as this has an important bearlng on the distri-
bution of the types and their uses, e.g., clapsticks in Arnhem Land for
traded boomerangs, and a rock engraving of a hooked boomerang at Port
Hedland hundreds of miles from where it was made.

Maps showing the distribution of boomerangs in Australia have been
given by Davidson [1936, p. 89], [1937, p. 19], Guiart [1948, p. 33] and

. McCarthy [1961, p. 344). Precise boundaries of non-use of boomerangs in
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fig. 3.1. Distribution of boomerangs in Australia. (After [McCarthy,
1961, p. 344] and [Davidson, 1936]).

non-returning boomerangs

returning boomerangs

boomerangs not made (received by trade in some areas).

X cross boomerangs.

the Western Desert area are not known [McCarthy, personal communication,
1974].
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84 The cross section and twist of Australian boomerangs.

The cross section of a boomerang, rather than its planform, is of cru-
cial importance to its flying behaviour [Hess, 1968a], see §16. This has

been noted by many investigators. For instance, Smyth [1878, p. 318]
states: '

The form of the weapon in section is apparently essential to its flight
and return. It is observable in all the specimens I have examined, and
in all, whether right-hand or left-hand, the flat side in gyration is
towards the earth.

It is, however, a curious fact that in most literature on Australian
boomerangs very little attention is paid to the various shapes of boom-
erang cross sections. Only in a few instances are drawings of such cross
sections presented, and then almost exclusively sections through the
central part of a boomerang, e.g. [Smyth, 1878, p. 318]. The only fa-
vourable exception I am aware of is Turck [1952], who gives drawings of
17 Australian boomeréngs with at least three cross sections Eaken at
different points of each boomerang. He also gives some detailed measure-
ments and mentions the region of origin of each boomerang. Although this
is not mentioned by Turck, probably the boomerangs studied by him are

museum specimens, which may have become warped.

It appears from the available literature that most Australian boomerangs
have a 1ens-éhaped cross section throughout their whole length, and that
often one side is more convex than the other side, which may even be
flat. The shape of the cross section generally has a front-back symmetry,
i.e. the maximum thickness is in the middlé_of the profile, and there is
no difference between the leading and the trailing edge of a boomerang
arm. If both arms would be kept in exactly the same plane, the boomer-
ang's aerodynamic properties would be independent of the sense of rota-
tion imparted to it. In other words, it could be used both as a right-
handed and as a left-handed boomerang. In reality, however, most boom-
erangs are somewhat twisted, either accidentally or on purpose. This
probably would make them suitable to fly reasonably well with one par-
ticular sense of rotation only, hence they would be either right-handed

or left-handed boomerangs. On this point Waite [1930, P 436] remarks:
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Scissors, as ordinarily constructed, naturally cannot be used by left-
handed people and, similarly, a left-handed thrower cannot use a nor-
mally right-handed boomerang; weapons with reversed inclination are
known, and indicate use by left-handed throwers.

fig. 4.1. Sketch of a boomerang with twist (right-handed).

LI1-Tl and L2-T2: cross sections through boomerang arms.
L1, L2: leading edges. Tl, T2: trailing edges.
CM: centre of mass of boomerang. Arrow w: sense of

rotation.

A right-handed boomerang designed with an intentional twist is sketched
in fig. 4.1. If such a boomerang is placed on a plane support, its more
convex side uppermost, the leading edges of its arms (L1, L2) would be
raised above the supporting plane. (A similar description is given by
Thomas [1910, p. 236].) It is this twist, algo called skew (Drall in-
German), which is claimed by many authors to be essential to the return
flight of boomerangs. For instance, Oldfield [1865, p. 265] staﬁes:

The efficacy of the boomerang does not at all depend on the inclination
of its arms to each other, its whole efficiency being due to a twist by
which the plane of one arm is made to depart from the plane of the
other, just as the sails of a windmill are not in the same plane.

Other authors who state that the twist is an essential characteristic
of‘returning boomerangs are:Erdmann [1869], Stille [1872], Smyth [1878],
Hardman [1886], Lumholtz [1889], Buchner [1905, 1916, 1918], Thomas
(1910, 1955], Sarg [1911], Sutton [1912, 1939], Thorpe [1924; 1926],
Nevermann [1925], Bonnet [1926], Franz [1928], Davidson [1935b],
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McCarthy [1957, 1958a, 1961, 1965]. Erdmann and Stille considered boom-
erangs from a physical viewpoint, and the twist ("windschiefe Fliche")
is an essential feature in their theoretical models. Probably most of
the other authors relied on earlier sources rather than assessing them-
selves the function of twist in boomerangs. There are authors who state
that twist causes what might be called a "helicopter effect” in boom-
erangs. For instance, Lane Fox [1868, pP. 425) mentions:

-+. a slight lateral twist, by means of which it is caused to rise by
virtue of its rotation, screwing itself up in the air ...

(See also [Lane Fox, 1877, p. 30].) And Smyth [1878, p. 318] states:

This twist is the twist of the screw, and the property the boomeréng

has of ascending is due to its having this form.

This "helicopter effect" is indeed of importance to boomerangs, but it
does not necessarily require the presence of twist (see §16). Boomerangs:
without any twist may perform very well and return perfectly, as I know
from my own experience. This is also reported by Hillyer [1909, p. 256],
and Salet [1903, p. 186] even asserts:

J'ai trouvé ainsi que la face inférieure du boomarang doit &tre absolu-
ment plane ... '

But, although twist may not be a necessary feature of returning boom-~
erangs, there can be little doubt that many Australian returning boom-
erangs possess a certain amount of twist of the kind indicated in fig.
4.1. For instance, Smyth [1878, P. 322] says:

I never saw a Wonguim made by the natives of Victoria which was not
twisted. The thin leaf-like weapons of the West Australians are twisted.
In some the twist is so slight as to be scarcely perceptible, but it is
there, and can always be discovered.

The last sentence of this quotation would suggest that the presence of
twist in some Western Australian returning boomerangs (kylies) can only
be discovered if one is purposely looking for it. More explicitly Smyth
[1878, p. 335/6] remarks about kylies:

At first sight they appear to be quite flét; but a close examination
shows that there is a slight twist; and in weapons so thin as these a

very small deflection is sufficient to ensure their true flight-and
their return to the thrower.
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As in such thin implements even-a slight twist would be relatively easy
to detect, this passage raises some doubt as to the universality of
twist_in Australian réturning boomerangs. It is probably too late now
to investigate this matter in the field, and boomerangs kept in museums
may have become warped so that their original twist cannot be assessed
anymore:

As the result of warping it is often impossible to distinguish return-
ers from ordinary boomerangs in museum collections. [Davidson, 1936,

p. 97] . v : . . .

It should be clearly understood that if a given boomerang with good.
flight properties suffers a change in the amount of twist, either inten-
tionally or accidentally (warp), its behaviour in flight may be changed
considerably. (See also §5).

Non-returningtboomerangs may have a negativéftwist, i.e. atwist opposite
to the one indicatedbin fig.vé.l. This has been remarked by Walker
(1901a, p. 457/8] = [1901b, p. 338] = [1901c, p. 516] and also by Thomas
(1910, p. 236]=[1955, P. 883], Carter [1933, p. 142] and Musgrove [1974,
p- 188]. Indeed, a certain amount of negative twist may allow a boomer-

ang to traverse an approximately straight flight path. See [Musgrove,
1974, p. 188] and §17.

Finally, it may be remarked that small-scale features of a boomerang's
surface may influence its flying behaviour. The pPresence:-of dimples or
ridges (fluting) might‘reduce the air resistance, as was already noticed
at the end of §2. See also similar remarks by Mouider (1962, pP. 59] and
Wood [1974]). The sharpness or bluntness of the leading edges and the
smoothness or roughness of the surface might also be aerodynamically
relevant (see §17). However, these matters have not been investigated
as yet. McCarthy (personal communication, 1974) remarks that the aero-
dynamic effect of fluting on boomerangs would be accidental or fortui-
tous, as similar fluting is also applied to shields, wooden containers,

clubs, throwing sticks, where it has a decorative function.
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§5 The manufacturing of Australian boomerangs.

There exists a 16 mm. documentary [Campbell, 1958] showing in detail
how a boomerang is manufactured by an Australian Aborigine. In this
case the Aboriginal craftsman Yaningi Djungerai made a fluted (non-
returning) boomerang near Yuendumu, Central Australia in 1958. The
film shows that he carefully selected a mulga tree which he cut down
at shoulder height. This was done with a "European" ‘axe, but in former
times stone axes were used. From the fallen trunk he cut off a curved
piece of about | m. length and 15 cm. diameter. This log was fixed in
an upright position, a hole in the ground being used as a vice. The
log then was cleaved in two, and the thinner part was discarded. Four
or five notches were made in the round side of the other part, so as
to control the splitting of the wood. Then pieces of wood were- chopped-
off with the axe, leaving‘avflat board of about 2} cm.. thickness: with.
a curved planform. The edges of this board were trimmed with the axe
so that a rough boomerang planfcrm resulted with a length of about

75 cm. From this point on the craftsman used various stone chisels.
Gradually the piece of wood acquired the desired shape. Every now and
then the craftsman critically viewed the object from different direc-
tions. When the boomerang looked almost finished, it was rubbed with
sand. With a very fine chisel the ornamental fluting was made on the
more iconvex side of the boomerang: some 13 parallel grooves. Each
groove proceeded first from a point about 7 cm. from the tip of one arm
to the "elbow" of the boomerang and then from the other arm to exactly
the same point on the "elbow". Finally the craftsman applied a coat to

the whole surface of the boomerang by rubbing it with wet red ochre.

The manufacturing of boomerangs by Aborigines has been described by
many authors. A rather detailed account, as far as North West Central
Queensland is concerned, is given by Roth [1897]. In his sec. 151

[p. 102] he treats the artificial bending and straightening of timber:

The aboriginals throughout all the different ethnographical districts:
both know and practise various methods of bending or straightening
timber, either when already cut or in the rough. Thus, a dry heat in
ordinary sand, a moist heat from burning freshly-gathered gum-leaves,
or moisture in general, such as soaking in water, is employed for bend-
ing any of their wooden implements into shape as required. In order to
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maintain and preserve the timber in the position attained by one or
other of the preceding processes, the whole is covered thickly with
- grease and fat, saurian of mammalian.

On the making of boomerangs in particular Roth_[1897,'p. 142] says:

The most common material, perhaps, of which these fighting boomerangs
are made is gidyea (Acacia homalophylla, A. Cunn.), though other woods,
such as mulga (Acacia aneura, F. v. M.), white-gum, &c., are often used,
the name of the timber occasionally giving the name to the implement
[...]. The weapon is usually cut out from the side of a tree-trunk en
bloc, then gradually got into shape with a chisel, &c., and finally
smoothed off with a piece of sharp-edged flint or glass. With wood of
suitable grain, white-gum, for example, the original block may be split
down and two boomerangs made of it. Any defect in shape, in the nature
of a bend or twist, can be remedied by the various artificial means
which have already been discussed (sec. 151). The mode of manufacture
of the hooked variety varies somewhat from the preceding, the portion
of the trunk for its shaft being cut out at the same time with an ad-
jacent branch or rootlet for its hook ...

Roth [1909, P1. LIX] indicates in a sketch the "method of cﬁtting a
boomerang from a flange on the butt of a tree". Smyth [1878, p. 311],

referring to the returning boomerang (wonguim) of Victoria, states:

The woods commonly used for making boomerangs are the limbs of the iron-
bark and she-oak, but the roots of the various kinds of eucalypti are

in some places highly esteemed.

Very good boomerangs, of the class to which the Wonguim belongs, are
sometimes made of the bark of the gum—trees. The bark is cut into the
right shape, and heated in ashes and twisted slightly. Weapons made of
bark may have a good flight, but they are not so valuable as those made
of hard wood. Even those made of wood are not seldom heated, softened,
and twisted; but the best Wonguime are cut with a tool into the right
shape. The eye of the maker guides every stroke, and when the instrument
is finished it is not necessary to heat it and bend it.

According to Nicols [1877, p. 510]:

The weapon is made of various woods, a piece with a slight elbow being
selected. It is hardened by baking. The right form is arrived at by
trial, as I have seen during the process of manufacture. Those sold to
Europeans are the failures. -

Campbell's [1958] documentary does not show any trials or flight tests
being made during the manufacturing, but that such trials may be impor-
tant is indicated by the following three quotations:

In form, in length, and in weight, the boomerangs which return vary a
good deal. The men who are most skilful in shaping these instruments

rarely make two of the same pattern. They are chipped and smoothed as
experiments made from time to time suggest alterations, and the weapon
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is not finally completed until it has been thrown successfﬁlly, and has
come back in the manner desired by the maker. [Smyth, 1878, p. 311]

The boomerangs are manufactured from greenwood cut to the desired shape
and angle. The points are hardened by drying in hot sand or ashes, after
which the weapon is bent to the required twist whilst held firmly on the
ground by the ball of the foot and wrenched with the hand. But even af-
ter this treatment the boomerang is not finished until repeated trials
of its flight have been made, and it is chipped, scraped, and twisted
until its working qualities are considered perfect. [Jennings & Hardy,
1899, p. 627]

In the manufacture of the boomerang, the most expert could never tell

. whether or not the one he was making would be successful or not, until
it was carved in the rough and he frequently had to throw away one after
another before he succeeded in developing the necessary curve; when this
is obtained he continued working at it until nearly finished, when he
tested it in the open. If the flight was unsatisfactory he heated the
faulty part in the hot ashes to make it pliable; he then held it between
his teeth while his hands gave it the necessary twist. This he continued
until he was quite satisfied. The only tools used were a stone tomahawk
and pieces of quartz. [Christison & Edge-Partington, 1903, p. 38]

The last two quotations particularly stress the "required" or "necessary"
twist (see §4), and it is indeed true that even apparently small differ-
ences in twist may cause large differences in the flying behaviour of

boomerangs. The methods for producing the right amount of twist are also
mentioned by Lumholtz [1889, p. 49/50]:

The peculiarity of the boomerang, viz. that it returns of itself to the
thrower, depends on the fact that it is twisted so that the ends are
bent in opposite directions; the twisting is accomplished by putting

it in water, then heating it in ashes, and finally bending it, but this
warp must occasionally be renewed, for it sometimes disappears, espe-
cially if the weapon is made of light wood.

I want to emphasize that this bending and twisting of boomerangs by Ab-
origines does not necessarily imply that a twist is being produced; it
seems more probable that the extant twist is being modified:

The Australians in the manufacture of all their weapons, follow the nat-
ural grain of the wood ... [Lane Fox, 1868, p. 423]

It would be fortuitous if the grain of the wood from which a boomerang
is made would be entirely without some twist of its own, or if this twist

would be exactly of the nature and the amount desired for a good boomer-

ang.
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Before flight trials have been made an Aboriginal boomerang maker may
not even know whether his boomerang will be a returning one or not.
Howitt [1876, p. 248] remarks:

... I have great doubt whether any of the natives can tell beforehand
whether a boomerang No. 1 [return type] will, when finished, be a good
"marndwullun wunkun" [returning boomerang] or not; and it is not uncom-—
com for an aborigine, if he finds his boomerang to return instead of
going straight to its mark, to heat it in the ashes and straighten it,
so that the blades lie in one plane. ' ‘

Mathew [1887, p. 158] states:

Of boomerangs they had two kinds; one returned when thrown, the other
did not. Whether the weapon would return or not seemed the effect of
chance, and not design, in the construction, for, without a trial, they
seemed unable to tell which kind the weapon was, and the end to be held
was indicated by a few scratches at the very extremity.

And Roth [1902a, p. 512]=[1902b, p. 19], writing about toy boomerangs
in Queensland, says:

The boomerang is said to be right or left handed, not because it is nec-
essarily thrown with the one or the other hand, but because it circles
to the right or left side of the thrower. Until its manufacture is com-
pleted, and it has been tried by experience, the blacks have told me

that they cannot determine with any degree of assurance which of the two
varieties it will prove to be.

&

Broken boomerangs are sometimes repaired. Accordiné’to Nevermann [!925,
P 43]:

Die Anfertigung eines Bumerangs kostet viel Zeit und Miihe. Deshalb werden
zerbrochene Wurf- und SchlaghSlzer sorgfidltig ausgebessert, wenn es sich
noch loht. Die Ausbesserung ist auf zweierlei Weise mSglich. Entweder
klebt man die einzelnen Stiicke mit Harz zusammen, das aus Stachelschwein-
gras gewonnen wird, oder man bindet sie mit nassen Kinguruhsehnen anein-
ander. Die letztere Art soll die bessere sein.

A picture of a repaired boomerang is shown in [Cranstone, 1973, p. 16].

Do Aboriginal boomerang makers possess any knowledge concerning ''the
aerodynamic and mechanical principles" which determine the flying behav-
iour of boomerangs? The quotation marks are added here because the con-
cepts used by Aborigines when they deal with physical phenomena may be
quite different from those used at present by scientists. In the avail-
able literature I did not find any information concerning this question,

except for a rather vague indication by Nevermann [1925, p. 40], relating
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to the Aranda in Central Australia:

Eine genauere Erklarung fur die sonderbare Flugwirkung des Kdgardgana
[returning boomerang] haben die Aranda selbst nicht. Sie halten seine
Eigenart, die sie mbaritjika nennen, fiir eine Erfindung ihres Gottvor-
fahren, denn er zeigte dem ersten Menschen, wie man das Geheimnis der
Wiederkehr in den Bumerang hineinzaubert.

Boomerangs could very well be manufactured according to certain empir-
ical rules and routines only (more or less as bicycles are manufactured
in our society, where, I would guess, most bicycle makers would not be
familiar with the principles by which a bicyclist maintains his balance).
On the other hand, Aboriginal boomerang makers might have a set of "the-

oretical concepts which they apply in the manufacturing of boomerangs.
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§6 The throwing and the flight of Australian boomerangs.

This section deals mainly with the throwing and the flight of returning
boomerangs. The manner in which an Aborigine proceeds when he is about

to throw a boomerang is picely described by Smyth [1878, p. 312]:

When a skilful thrower takes hold of a boomerang with the intention of
throwing it, he examines it carefully (even if it be his own weapon, and
if it be a strange weapon still more carefully), and, holding it in his
hand, almost as a reaper would hold a sickle, he moves about slowly,
examining all objects in the distance, heedfully noticing the direction
of the wind as indicated by the moving of the leaves of trees and the
waving of the grass, and not until he has got into the right position
does he shake the weapon loosely, so as to feel that the muséles of his
wrist are under command. More than once as he lightly grasps the weapon
he makes the effort to throw it. At the last moment, when he feels that
he can strike the wind at the right angle, all his force is thrown into
the effort: the missile leaves his hand in a direction nearly perpendic-
ular to the surface; but the right impulse has been given, and it quick-
ly turns its flat surface towards the earth, gyrates on its axis, makes
a wide sweep, and returns with a fluttering motion to his feet. This he
repeats time after time, and with ease and certainty. When well thrown,
the furthest point of the curve described is usually distant one hundred
or one hundred and fifty yards [90-140 m.] from the thrower.

It seems improbable that "in a direction nearly perpendicular to the
surface" would refer to the boomerang's flight path; rather Smyth would
mean that the boomerang's plane of rotation is nearly vertical at the
start. Baker [1890, p. 377] provides the following lively description

of boomerang throwing by an Aborigine near Botany Bay:

Arrived at a safe distance from the camp, he braced himself, and saying,
"Look out, boss!" ran forward two or three steps, bent his body backward
in the form of a bow, brought the boomerang over between head and shoul-
der, then hurled it into space. The moment it left his hand it looked
like a wheel revolving rapidly in the air, and made a harsh, whirring
sound. Taking a circle about one hundred and fifty yards [140 m.] in
diameter, it passed around to the left, turning backward in a gradual
curve, and struck the ground a few yards from us, sending up a cloud of
sand. L o . .

The distances reached by returning boomerangs as mentioned by both Smyth
and Baker (and many other authors as wéll) are probably seriously over-

estimated. This point will be discussed further down in this section.

Another description by Smyth [1878, p. 312] stresses the surprising

turns in the flight of a returning boomerang:
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I have seen the natives at Coranderrk throwing the Wonguim on many occa-
sions; and the skilful thrower seemed to be able to do exactly what he
liked with the weapon. He would throw a thin blade in such a way as to
make it almost disappear in the distance - indeed, when the edge was
presented, it was for a moment or two impossible to follow the flight
with the eye - it would then return, gyrate above the thrower in an ab-
surd manner, descend and describe a curve as if it were about: to strike
him, go off in another direction, still descending, so as to alarm a
group of blacks at a distance, and fall finally some yards behind himg
the thrower, the while, regarding the weapon with an intelligent and
amused expression, as if he knew exactly where it was going and where

it would fall.

Sofar these quotations provide only a general impression of the throwing
and the flight of returning boomerangs. A more precise description of
the throwing technique is given by McCarthy [1957, p. 88]:

It is thrown with a vigorous action in which the thrower runs a few
steps to gain greater impetus. The weapon is held at one end, behind the

head, with the convex surface to the left and the concave edge to the
front, swung rapidly forward, and just before release is given addition

al impetus by a powerful wrist movement.

This wrist movement needs not be an active or "powerful" one; a sudden
stop of the throwing hand just before releasing the boomerang will do

[Hess, 1968a, P. 126). It is a curious fact that Aboriginal boomerang

fig. 6.1 Throwing a righﬁ—handed returning boomerang. (Copied from
[Ray, 1906, p. 87].) From left to right: thrower's arm brought behind

the shoulder; moment of release; afterwards.
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throwers invariably hold the boomerang in such a way that the free ex-
tremity points forward at the moment of release, i.e. "with the concave
edge to the front", see fig. 6.1. The boomerang is thus held at the end
denoted by 1 in fig. 4.1. But why could not a boomerang be thrown with |
the convex edge in front? The choice would be only a matter of personal

preference, it seems to me [Hess,]gsaa, p,125]; and according to Hawes

[no date]: ) ~

It doesn't make much difference which end you hold as long as the flat
side is away from you and the boomerang is inclined at the correct angle
and thrown with spin! It can't remember which end you held after it has
left your hand!!

Perhaps one end of an Australian boomerang (end ] in fig. 4.1) generally
would be better suited to be used as a grip than the other end:

When about to throw, he grasped the boomerang firmly in his right hand,
holding it by its extremity, which, as is the case with every come-back
boomerang, was slightly roughened to afford a firm grip, with the flat-
tened surface towards the palm. [Jennings & Hardy, 1899, p. 627]

But it is difficult to see why only end | should be roughened this way.
Since boomerangs may be used for a great variety of purposes (see §7 ),
the reason behind the uniform Aboriginal way of throwing might be found
in the use of the boomerang not as a throwing implement, but as some
other tool. It might be worthwhile to investigate this matter in the
field in places where boomerangs are still thrown by Australian Aborig-

ines.

fig. 6.2 Right-handed boomerang thrower; view from behind. § is the

angle between the boomerang's plane of rotation and the horizon.
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The angle between the boomerang's plane of rotation and the horizon at
launch (9 in fig. 6.2) has a profound influence on the boomerang's flight
path [Hess, 1968a). Most references to Aboriginal boomerang throwing con-
tain only scanty information on this angle. Probably the boomerang's
plane should be vertical or inclined with the. upperpart to the right of
the right-handed thrower.(45° <0 :'900) in order to obtain good flights
with most returning boomerangs. However, Howitt [1876, p. 249] mentions:
I found that the throws could be placed in two classes, one in which the
boomerang was held when thrown in a plane perpendicular to the horizonm,

the other in which one plane of the boomerang was inclined to the left
of the thrower.

And the same author [1877, p. 313] quotes a mr. James as follows:

In throwing the boomerang I have seen it usually held nearly parallelwith
the horizon. When thus thrown it would rise and return towards the
thrower ...

Straight-flying fighting and hunting boomerangs probably are thrown with
their plane of rotation approximately horizontal. Some, possibly second-
hand, information on this point is given by Sarg [1911, p. 16]:

Im Gegensatz zum Spiel-Bumerang wird die zur Jagd und Krieg dienende
Waffe beim Wurfe horizontal gehalten und unter dem in der Linken gehal-
tenen Schild hervorgeschleudert; auch sie dreht sich wdhrend des Fluges
um ihre Querachse, ihre Rotationsebene aber bleibt, da sie keinen Drall
hat, horizontal mit nur leichter Neigung zum Aufwirtssteigen, die Flug-
bahn h#lt daher die beim Loslassen erteilte Richtung inne, bis die Trieb-
kraft erschépft ist.

It is regrettable that so very few descriptions of the throwing and the
flight of Aboriginal boomerangs are accurate and unambiguous. If a di-
rection or an orientation is mentioned it is not always clear whether
the direction of the boomerang's forward motion is meant or the orien-
tation of its plane of rotation. (Consider for example the quotation
from [Smyth, 1878] at the beginning of this section.) It is difficult
not to believe that Howitt [1876, p. 249] made a mistake when he des-
cribed a method of throwing the boomerang with its plane "inclined to
the left of the thrower". The more so as in his subsequent description
of a boomerang flight the boomerang's plane, initially vertical, is said
to become "inclined to the left”, whereas most returning boomerangs

would become inclined to the right: the angle § would decrease. See

among others: [Smyth, 1878, p. 312], [Thomas, 1906, p. 78; 1955, p. 883],
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[Hess, 1968a, p. 128/30]. But here Howitt could have referred to an-
other, quite essential, change of orientation: the boomerang’s plane of
rotation turns with its foremost part to the left: counterclockwise as
viewed from above (see for instance [Hess, 1968al.) The complete des—

cription by Howitt“[1876, p. 249] reads as follows:

In the first method of throwing [boomerang's plane vertical], the mis-
sile proceeded, revolving with great velocity, in a perpendicular plane
for say 100 yards [90 m.], when it became inclined to the left, trav-
elling from right to left. It then circled upwards, the plane in which
it revolved indicating a cone, the apex of which would lie some distance
in front of the thrower. When the boomerang in travelling passed round
to a point above and somewhat to the right of the thrower, and perhaps
100 feet [30 m.] above the ground, it appeared to become stationary for
a moment; I can only use the term hovering to describe it. It then com-
menced to descend, still revolving in the same direction, but the curve
followed was reversed, the boomerang travelling from left to right, and
the speed rapidly increasing, it flew far to the rear. At high speed a
sharp whistling noise could be heard. In the second method [boomerang's
Plane inclined to the left], which was shown by "bungil wunkun," [= "He
of the Boomerang'", the thrower's nickname] and elicited admiring ejac-
ulations of "ko-kZ" from the black fellows, the boomerang was thrown in
a plane considerably inclined to the left. It there flew forward for say
the same distance as before, gradually curving upwards, when it seemed .
to "soar" up - this is the best term - just as a bird may be seen to
circle upwards with extended wings. The boomerang of course was all
this time revolving rapidly. It is difficult to estimate the height to
which it soared, making, I think, two gyrations; but judging from the
height of neighbouring trees on the river bank, which it surmounted,

it may have reached 150 feet [45 m.]. It then soared round and round in
a decreasing spiral and fell about 100 yards [90 m.] in front of the
thrower. This was performed several times. The descending curve passed
the thrower, I think, three times. Other throws were spoiled by the
wind, which carried the boomerang far to the front. I observed, and
some of the aborigines confirmed it, that the thrower preferred throw-
ing with the wind. .

The quoted passage seems to be a qualitative report and the distances
and heights mentioned in it are very rough estimates only, as Howitt
himself makes clear. Nevertheless it has apparently served as a basis
for descriptions by others: Walker [190la, p. 457] = [1901b, p. 338] =
[1901c, p. 5151, Thomas [1906, p. 78], [1910, p. 236] = [1955, p. 883],
Cornish [1956, p. 245], McCarthy [1958a, p. 44]. For example, consider
this description by Thomas [1955, p. 883]:

Throws of 100 yds. [90 m.] or more, before the leftward curve begins,

can be accomplished by Australian natives, the weapon rising as much
as 150 ft. [45 m.] in the air and circling five times before returning.
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Although it is not impossible for some returning boomerangs to reach
distances of 90 m. or more (see §13), a typical return flight path
would have a maximum diameter of about 30 m. and a maximum height of
some 15 m., roughly speaking. To make a boomerang attain a height of

45 m. would be difficult to accomplish; even for an expert thrower. As
I remarked earlier in this section, the dimensions of boomerang flight
paths often are seriously overestimated. Distances of over 100 m.
reached by returning boomerangs are not seldom reported. In none of
these cases is there any indication that such distances were actually
measured. Probably rough estimates were made by untrained eyewitnesses:
~and it is surprisingly easy to overestimate the distance of a fast
flying and spinning piece of wood high up in the air. I could find only
one second-hand reference to measurements of flight paths traversed by
Australian Aboriginal boomerangs; Thomas [1906, p. 79] states:

The distance to which the return form can be thrown is a matter of much
dispute. Howitt describes a throw of one hundred yards [90 m.] (esti-
mated), but there can be no doubt that this has been exceeded. I have
been informed by a resident at Coranderrk, that he has measured throws
of one hundred and twenty yards [110 m.], and seen throws of over one
hundred and fifty yards [140 m.]. The war boomerang can probably be
thrown two hundred and fifty yards [230 m.] or more.

Unfortunately, the method of measuring is not indicated, and neither is

mentioned whether or not the boomerang(s) fully returned to the thrower.

It would not be a difficult matter to make a reliable estimate of the
dimensions of a boomerang's trajectory, by placing one witness at the

- point over which the boomerang is expected to reach its farthest dis-
tance. The right position can be found by trial and error after a few
throws. Afterwards the distance between witness and thrower can be de-
termined with a tape measure. By means of a protractor the angular el-
evation of the boomerang can be determined by a second witness. The
combination of both measurements would provide a reliable estimate of
the bodmérang's height. It is astonishing that even such simple proce-
dures are never mentioned in the ethnographical literature, and éppar—

ently have never been carried out as far as Aboriginal boomerang throw-

ing is concerned.
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Representations of flight paths in ethnographical publications are
scarce and mostly inaccurate. Some sketches are provided by Roth [1897,
Pl. Xvii], [1902, P1l. xxxI1], Jennings and Hardy [1899, p. 627/9] and
Ray [1906, p. 88/9]. Some of the flight paths depicted in these last
two references are quite fanciful. The sketches by Baker [1890, p.376/7]
appear to be reasonable, qualitative represenﬁations, but are based on
Baker's throwing his own boomerangs himself. Outside the ethnographical
literature far more accurate representations of flight paths, traversed
by self-made boomerangs, have been published by Erdmann [1869], Walker
[1897, 1900, 1901a,b,c], Buchner [1905, 1916, 1918] and Hess [1968a].
However, this latter grehp of publications does not provide direct in-

formation on the flight of Aboriginal boomerangs.

Comparative flight tests with Aboriginal boomerangs from different re-
gions apparently have never been carried out. Only Smyth [1878, p. 336]
mentions: '

All the West Australian boomerangs seem to fly further than those used
by the natives of the east.

‘Returning boomerangs sometimes are thrown in such a way that they hit
the ground:

It can be thrown so as to run along the ground for some distance, hoop-
fashion, then ascend, describe a great curve, and return to the thrower.
[Smyth, 1878. p. 312]

A boomerang should be strong enough for this; Howitt [1876, p. 249]

relates:

Another method of throwing was mentioned, namely, to throw the boomer-
ang in such a manner that it would strike the ground with its flat side
some distance in front of the thrower. It would then rise upwards in a
spiral, returning in the same. This was not attempted as it was decided
the boomerang was not strong enough. A final throw in a vertical plane
so that the missile struck the ground violently fifty or sixty yards in
advance terminated the display. It ricocheted three times with a twang-
ing noise and split along the centre.

As was mentioned in §2 and §4, boomerangs to be thrown with the left
hand, i.e. with opposite spin, also exist; according to Smyth [1878,
p. 311]:

The Wonguim returns to the feet of the thrower when skilfully thrown.
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Generally it is so fashioned as to describe a curve from right to left;
but one in my possession, which I have seen thrown with precision, so
as to return every time to within a short distance of the thrower, is a
left-hand boomerang. It describes a curve from left to right.

A left-handed boomerang can be considered in every respect, including

its flight path, as the mirfor image of a right-handed boomerang [Hess,
1968a, p. 127/8]. As to the occurrence of left-handedness among the Aus-
tralian Aborigines (in North West Central Queensland) Roth [1897, p.143]

remarks:

Among the number of aboriginals examined for left-handedness, the pro-
portion of such was found to be very marked ...

The distinction between the flights of returning and fighting boomer-

angs may not be very sharp; Roth [1897, p. 129] points out that

... any kind of fighting boomerang can be more or less thrown in such
manner as to "return" or '"come-back," making one single complete, or
perhaps two incomplete, revolutions from the starting-point.

The influence of the prevailing wind on the flight of returning boomer-

angs is described by Charnay [1878, p. 72] as follows:

D'abord, le boumerang ne revient bien qu'avec le vent, dont 1'Australien
étudie avec soin la direction; car, s'il ne jette pas son arme exacte-
ment dans le vent, elle ne reviendra pas sur lui, mais ira tomber &
gauche et 3 droite, selon que le boumerang est gaucher ou droitier, ce
qui tient 3 une légére inflexion du bout de 1'arme. Si le vent est trop
fort, le boumerang volera tr&s loin en arriére et ne reviendra pas au
point de départ; enfin, s'il n'y a pas de vent du tout, le boumerang,
aprés avoir &puisé sa force de projection, s'enl&vera en tournoyant sur
lui-m@me et décrira des cercles presque concentriques, en descendant au .
fur et 3 mesure que s'&teindra sa force de rotation.

To conclude with, here follow some remarks concerning the spectators

rather then the throwers:

It is dangerous to stand near the thrower, if the observer have not
selfpossession. When the instrument returns, it is necessary to look

at it attentively, and not to move unless it comes too nigh; any hurried
movement, due to alarm, for the purpose of avoiding it, might result in
its striking the affrighted person and inflicting a serious wound. The
plan is to stand quite still, and to wait patiently until the force is
expended. The thrower, if skilful, will take care that, if the observers
keep their places, none of them are injured. [Smyth, 1878, p. 313]
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In 1885 some Australian Aborigines were '"showed'" in Minster, Germany by
an American impressario. The show included a demonstration of boomerang
throw1ng, in which a curious incident took place:

Nur ein einziges Mal machte ein Bumerang mit dem Hute eines Zuschauers
unbeliebsame Bekanntschaft, indem er auf dem Riickwege zur Erde denselben
wie mit einem Rasirmesser haarscharf mitten durchschnitt, so dass die

obere Hilfte des Hutes vom Kopfe flog; auch die Brille des betreffenden:
Herrn ging in Stiicke. [Landois, 1885, p. 544]
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§7 Various uses of Australian boomerangs.

This section deals with the different ways in which boomerangs are used
by the Australian Aborigines. As has already been made clear, returning
boomerangs are mainly used as toys. For instance, Smyth [1878, p. 311],

referring to the returning wonguim of Victoria, says:

The boomerang here decribed is usually regarded as a plaything: it is
not a war-boomerang; and though it is occasionally used in battle, and
sometimes for killing birds and small animals, it is not so handy as the
short stick named Konnung.

And according to McCarthy [1958a, p. 44]:

The returning boomerang is used chiefly as a toy in tournaments, the ob-
ject being to see which man can make it accomplish the greatest number

of circles in flight, and bring it back nearest to the thrower or to a
peg set in the ground.

The most detailed account of the returning boomerang being used for play

is provided by Roth [1897, p. 128] (North West Central Queensland):

The return boomerang is never used as a recognised article of exchange
or barter: that is to say it does not travel, and is manufactured just
as occasion requires. It is strictly a man's toy, and is used in differ-
ent ways as follows: - In the Boulia District, five, six, or perhaps
more men will stand in Indian file, each individual with raised arms
resting his hands on the shoulders of the one in front: another of the
playmates, standing by himself at some distance ahead and facing the
foremost of the file, throws the boomerang over their heads, and as it
circles round they all follow it in its gyration, the game being for any
of them to escape being hit, each taking it in turn to throw the missile
[...]). Among the Yaroinga tribe on the Upper Georgina, they often try
and arrange to make up two sides, the object being for a member of one
team to hit an individual of the opposite group. In the Cloncurry Dis-
trict, the Mitakoodi fix a peg into the ground, and the one who can

strike or come nearest to it with the boomerang when it falls to the
ground is declared the best man.

However, boomerangs of the returning type may occasionally be used for

hunting. Howitt [1876, p. 248] states:

In Cooper's Creek I have seen boomerangs No. 1 [return type] used by the
natives to kill ducks and birds in general which fly in flocks. They
seemed unable to calculate where its course would be among them, and
some were hit; the boomerang and the bird both fell. ’

And Oldfield [1865, p. 264/5] writes:

Where such birds congregate largely, the boomérang is of essential use;
for a great number of them being simultaneously hurled into a large
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flock of water-fowl, ensures the capture of considerable numbers, but,
unless under such circumstances, its value is inconsiderable. No native
ever attempts to kill a solitary bird or beast by means of the boomerang,
for even in the hands of those most expert in its use, its effects are
very uncertain.

A somewhat more subtle and indirect use of the returning boomerang as a

means of catching fowl is mentioned by McCarthy [1958a, p. 44]:
It is also thrown in the air to imitate a hawk flying over a flock of
ducks, cockatoos or parrakeets, so causing the birds to dip downward

and to be caught in a net spread either across a creek or a break in the
forest.

A detailed and lively description of this method is related by Waite
(1930, p. 436/7]. See also [Krefft, 1866, p. 368/9]. The kaili or West-
ern Australian boomerang, which is not always of the returning kind, is

used for killing birds as well as fish:

Kockatoos are killed by throwing the kazli [...], among a flock when
flying in dense clouds along the creek or sitting in thick clusters on

the branches of the gum—trees; and they rarely miss. [Clement, 1904,
p. 3] :

In shallow water, the fish are killed by throwing the "kaZli” [...] at
them, when they are 5 or 6 inches below the surface. The writer saw a
native in Cossack-creek kill eleven fishes, weighing from ome to two

pounds each, in less than half an hour, by means of the kaili. [Clement,
1904, p. 3/4]

See also [Peggs, 1903].

Basedow [1925, p. 168] describes the use of boomerangsbas striking

weapons in duels:

Where the boomerang is known it, too, is extensively used, in conjunc-
tion with the shield, by duellists to settle minor altercations. The
offended party throws one of his missiles into the camp of his rival as
4 summons to the fight, whereupon the latter immediately responds by
throwing another back, and walks out into the open, carrying with him
a single boomerang and a shield. Both men now start a war-dance, during
which they gradually approach each other, lifting their legs high in
the knees, brandishing their boomerangs in the air, and holding their
shields in front of their bodies. After a while, they close in; and the
real fight begins. Whenever an uncovered spot presents itself on either
man, the opponent, with the quickness of lightning, attempts to strike
it with his weapon. The hands in particular are selected as the best
marks to quickly put the rival out of action; and this opportunity is
never missed when it presents itself to the quick eye of the native.
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In revenge parties, boomerangs may be used in a more spectacular way:

In districts where the boomerang is used, a number of these weapons is
carried in the belts of the belligerents. When the parties are within
seeing distance of each other, each side begins to throw its boomerangs,
making them fly high in the air towards the enemy and return to their
respective owner. The demonstration is repeated time after time, as the
contending parties draw near to each other, until at length the boom-
erangs fly well over the opponent's heads on either side. This is for-
sooth an awe-inspiring spectacle and has the desired effect of arousing
the fighters' ire to a very high pitch. At a later stage, boomerangs
are employed in actual battle. [Basedow, 1925, p. 187/8]

McCarthy (personal communication, 1974) remarks as to the importance of

the boomerang as a hand weapon:

In the rock paintings and engravings men are more commonly armed with
the boomerangs (one and a shield, one in a girdle, just one boomerang
or up to three in each hand, etc.) than with spears and clubs. In east-
ern Australia, where the emu-kangaroo cord hunting nets were in use,
the boomerang as a killing weapon appears to have supplanted the spear.

Apart from being used as hunting and fighting weapons or playthings,
boomerangs may serve quite a variety of different purposes. According

to McCarthy [1961, p. 348, with illustrations on p. 347]:

The fluted central Australian boomerang has a wider range of uses than
any other type. It has one sharp end with which the men cut-open animals
and chop them up, dig wells, fire-pits for cooking kangaroos and emus,
and holes to uncover totem stones, unearth honey ants, lizards and other
burrowing animals, and scrape the hot ashes over and away from cooking
carcases. The edge of the boomerang is used as a fire-saw on a softwood
shield, as a fabricator to retouch stone adzes, and, as a bow, is rubbed
across the edge of another boomerang to produce a curious musical sound.
This boomerang thus takes the place of several other artifacts that
would have to be made and carried, and it illustrates an important prin-
ciple in the life of the desert or spinifex country tribes of the inte-
rior. To them a reduction in the chattels to be carried means less
weight to transport and more freedom of movement, vital needs for a semi-
nomadic people who have to travel great distances between waterholes and
in the search of food in a harsh environment. For this reason, the use
of this versatile boomerang spread from the central Australian and
Northern Territory tribes to those in western Queensland, Western Aus—
tralia and South Australia, and until the white man destroyed tribal
life it was rapidly replacing other kinds of boomerangs in these areas.

All of these uses of the fluted boomerang are demonstrated in Campbell's
[1958] 16 mm documentary. Boomerangs throughout Australia are often

used as musical instruments (clapping sticks):

The flatter faces of two are gently rapped together to mark the rhythm
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of a song or dance all over Australia. [McCarthy, 1961, p. 348]
Elkin [1953, p. 2], referring to Arnhem Land, says:

Indeed, boomerangs have been imported into this region as musical per-
cussion instruments. '

Van der Leeden [1967, p. 15] gives a rather detailed description of this

use by the Nunggubuju in eastern Arnhem Land:

De platte, brede boemerangs produceren een veel scherper geluid dan de
rechte, dikke clapping sticks, die elkaar bovendien slechts op €&én
plaats raken. De boemerangs houdt men zodanig vast - het gebruik van
boemerangs als clapping sticks verklaart overigens waarom men er liefst
twee tegelijk van maakt - dat deze elkaar op twee plaatsen, aan beide
uiteinden, raken. Dit geschiedt nooit precies op hetzelfde moment, en
daardoor heeft het ritmische spel van de boemerangs ook een snel en
jagend karakter. .

[Translation: The flat, broad boomerangs produce a much sharper sound
than the straight, thick clapping sticks, which, moreover, touch each
other in one place only. The boomerangs are held in such a way - the
use of boomerangs as clapping sticks explains why they are preferably
manufactured in pairs - that they touch each other in two places, at
both ends. This never happens at exactly the same instant, and because

of this the rhythmic play of the boomerangs has a fast and driving
character. ]

See also [Basedow, 1925, p. 374, 383, pl.LII]. The remarkable fact that
boomerangs are often manufactured, kept and traded in pairs has also

been noticed by Roth [1897, p. 143]:

It is interesting to note that both in camp or on the walk-about,
though an aboriginal may carry one spear, one shield, &c., he almost
invariably has two boomerangs. If they have both been made by the same
person they are very probably similarly marked: if he barters them, he
will generally "swap" them only as a pair, though beyond the fact of
two being required as an accompaniment for beating time at the sing-
songs and the corrobborees, it is difficult to understand why this
should so often be the case.

Different types of boomerangs can be ceremonially used in rituals. For

example:

It is this boomerang [jilparindji or kalawall [...] which is used in
ritual defloration on the Kunapipi ground, before ceremonial coitus.
That is to say, young girls have their hymens pierced prior to inter-
course on the ceremonial ground; other, whose hymens have already been
broken through normal premarital coitus, have the end of the boomerang
placed symbolically in the vagina. [Berndt, 1951, p. 67]

According to McConnel [1935, p. 49/50] ceremonial cross—boomerangs are
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used in a "boomerang-dance' by the King'gd:ndyi near Cairns:

The painted cross-boomerangs (yintyo:r gidyar) are used in a dance. A
stick fastened into the back of the yintyo:r is twirled between the two
hands to make the yintyo:r revolve as does the boomerang when spinning
through the air. This is done to a rhythmic movement as the men dance
in a circle to a song. This spinning movement ‘in the dance has earned
for the yintyo:r the popular name of "windmill" or "aeroplane.'" Need-
less to say these latter objects were unknown to the King'gd:ndyi when
this dance originated. The movement depicts the spinning of the cross-
boomerang in the air, as when thrown in play at night with a live coal
attached, for the amusement of the children.
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§8 The present situation in Australia.

In the preceding sections often the present tense was used, whereas the
past tense would have been more appropriate: the Aborigines' culture has

vanished to a great extent. According to McCarthy [1961, p. 343]:

There are not many places in Australia now where boomerangs are still
‘made and used by Aborigines who follow their old way of life. These
places are in the most remote parts of the continent where white contact
has not disrupted the Aborigines' culture. Boomerangs may still be ob-
tained in the Northern Territory, the desert areas of Western Australia,
parts of the Kimberleys and adjoining areas, and in the southern portion
of Cape York. Most of these are non-returning boomerangs, the returning
type having almost completely disappeared except in places like Palm
Island, La Perouse and elsewhere where it is made for the souvenir trade.

As regards the possibilities of studying Aboriginal booherangs in the

field Mr. F.D. McCarthy (personal communication, 1973) remarks:

Comparative tests in several localities are required and time is rumning
out rapidly for such research to be done. It is however still possible
to work with Aborigines in the Northern Territory at places like Papunya,
Yuendumu, Hooker Creek and other settlements who can make and throw non-
returning boomerangs in the old style, and at Yalata, South Australia,
and Warburton, Jigalong, Sunday Island and other places in Western Aus-
tralia, where returning boomerangs were used.

And:

La Perouse in Sydney would be a good place to study the throwing of
boomerangs made for the tourist trade, as would Cherbourg in south-east
Queensland, and Cundeelee in Western Australia.

An example of the present situation in relation to the manufacturing of
boomerangs is provided by Rose [1965, p. 42/3] in his study of the Ab-

origines at Angas Downs, Central Australia, in 1962:

Non-returning boomerangs were previously made by these people and used
as a hunting weapon, according to the enquiries made by the writer.
There were pone however in the camp that were made for this original
purpose. The only boomerangs that were made were for the tourist trade.
For a serviceable boomerang it is necessary to select a suitable bent
tree or branch so that the boomerang can be so shaped that the curve
follows the grain of the wood. It clearly requires some experience and
trouble to find such a curved branch. But the demands of the tourist
trade, where the boomerang is merely a commodity in a money economy, are
quite different from those where the boomerang is a hunting weapon or a
means of production. As a consequence the wood (mulga) for the trade
boomerangs was not selected carefully and most boomerangs sold (there
were a few exceptions) were cut from straight pieces of relatively thick
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wood. In the finished article the grain did not follow the curve. One
of the difficulties that the Aborigines had, when offering the trade
boomerangs for sale, was that many of the tourists expected a returning
boomerang, which the Aborigines at Angas Downs did not know how to pro-
duce. It was not unusual that the tourist might throw, or persuade the
Aborigine to throw, the boomerang to prove its returning capabilities.

Almost invariably, when the article hit the ground it broke, splitting
along the grain.

Cultural changes are reflected in the making of boomerangs; according
to Rose [1965, p. 77/8]:

Boomerangs were usually made by the men but women occasionally made
them, but their efforts were' extremely crude. [...]

Traditionally spears, woomeras, boomerangs and shields would have been
made by men and if the women were to begin making them, they would have
to overcome the old traditional attitude and probably equally important,
would need to acquire the requisite skill to make them. In the case of
the boomerang, the women had overcome the tradition, for they in fact
made them in 1962 but had not acquired the skill, so that what they
produced were almost caricatures of the boomerangs made by the men.

S

Nowadays boomerangs are commercially produced and sold in Australia, not
only by Aborigines, but also by "European' Australians. As an example

consider Lorin Hawes of Mudgeeraba, Queensland:

He employs seven workers, who turn out 60,000 boomerangs a year. Most
are sold in gift shops in major Australian cities, but a quarter of the
- output is shipped to North America and Europe for sporting clubs and
wives whose husbands have everything else. In addition, about 150,000
paying tourists a year turn up at Hawes' bushland farm, which he calls

a "boomerangery". [...]

All this is too much for Hawes' biggest competitor, the Queensland De-
partment of Aboriginal and Island Affairs, which every year sells 40,000
boomerangs made by aborigines living on missions. [Hawes, 1972, p. 53]
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§9 Boomerangs outside Australia (1).

Objects resembling boomerangs have been found in various parts of the
world, notably in ancient Egypt, south India, north Africa, prehistoric
Europe and among the Pueblo Indians in Arizona. In many of the‘reported
cases it 1is difficuit, or even impossible, to assess the function for
which the object under consideration was designed, or the way it was
used. It is no exception that a so-called boomerang of non-Australian
origin has none of the aerodynamicvproperties necessary for a boomerang- .
like flying behaviour, but only some superficial resemblance to Austral-
ian boomerangs. A straight stick with round cross section clearly is hot
a boomerang. A curved stick, or a flat object with a curved planformcan
be thrown so as to spin stably in its plane (see §17). This may serve
two purposes: first, with a flattened section the air resistance is re-
duced throughout the flight; secondly, the target is hit by ome of the
leading edges of the rotating weapon, which may be sharpened. Such curved
implements still need not be boomerangs. Only if an object has such a
shape that, rotating in its flight, it is carried by the air like an
airplane or a helicopter, it should be called a genuine (returning, non-

returning or straight-flying) boomerang.

Let us consider one by one the regions outside Australia were '"boomer-

angs" reportedly have been found.

1. Tasmania.

Almost straight hunting sticks with round cross sections were in use
among the Tasmanians according to Noetling [1911], who describes these
sticks, called lughrana, in minute detail. They have a length of some

60 cm. and a thickness of about 2.5 cm.

One of the most interesting observations as to the way the lughrana was
thrown is that of Backhouse, who states that they threw it "with a rota-
tory motion." This is confirmed by Breton, who says: "It can be thrown
with ease forty yards [36 m.], and in its progress through the air goes
horizontally, describing the same kind of circular motion that the boom-
erang does, with the like whirring noise." [Noetling, 1911, p. 71]

Noetling considers the lughrana as a primitive form of boomerang, but it

certainly does not at all possess a boomerang's characteristic proper-

ties.
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Apparently boomerangs were unknown to the Tasmanian Aborigines. Yet one
boomerang has been found on this island near East Devonport in 1851
[van Gooch, 1942]. From the description by van Gooch [1942, p. 22,

pl. VII] it is evidént that this object very much resembles, and even

may be, an Australian boomerang.

2. New Zealand.

In 1925 "an undoubted boomerang" was found in a recently exposed kitchen-
midden at Muriwai Beach, Auckland [Hamilton, 1926]. The boomerang resem-
bles a common type found in Queensland, has a length of 47 cm., awidth
of 3.8 cm. and a thickness of 0.75 cm. The Muriwai boomerang weighs 70 g.
"Whatever the wood is it is certainlynot a hardwood such as Eucalyptus."

[(Hamilton, 1926, p. 45]. It is not known from where this object came.

3. New Hebrides.

Rivers [1915] reports the use of "boomerangs" on the northern part of

the west coast of the island Espiritu Santo:

They are used entirely in sport. They do not return to the thrower, but
show the deflections from a straight course which are characteristic of
the flight of the Australian boomerang. In one method of throwing, the
instrument is made to strike the ground a few yards in front of the
thrower. One of the highest and longest throws seen by us was of this

kind. [Rivers, 1915, p. 107]
The ends of these non-returning boomerangs are truncated, not rounded
or pointed as with Australian boomerangs (see the pictures in [Rivers,

1915, p. 107]). Rivers gives no information on the cross sections of
these objects.

4. Celebes.

On this Indonesian island different types of boomerang-like objects are
found. On the Macassar peninsula throwing sticks with a knee-shaped

bend are used to kill or scare away birds. Von Hoévell [1902, p. 201/2
relates: '

Op een mijner laatste inspectie-reizen in the Noorderdistricten van
Zuid-Celebes zag ik, door den Controleur H.P. Wagner daarop opmerkzaam
gemaakt, te Pangkadjene eenige opgeschoten knapen bezig op de sawah's
met kromhouten naar vogels, zoowel op stilzittende als in de vlucht, te
werpen. Met verwonderlijke juistheid wisten ze de dieren te treffen en

ze de vleugels of de poten lam te gooien, zoodat ze dan gemakkelijk te
vangen waren. i : :

60



De kunst om aan die werphouten een richting te geven, dat deze terug-
keerden naar de plaats vanwaar ze geworpen werden, zooals met den echten
boomerang het geval is, verstonden ze echter niet.

[Translation: On one of my recent inspection travels in the Northern
districts of South-Celebes I saw, after my attention was drawn to it by
the Controleur H.P. Wagner, some strapping lads on the rice fields at
Pangkadjene engaged in throwing knuckle-~timbers at birds, still sitting
as well as flying ones. With amazing precision they knew- to hit the ani-
mals and to cr1pp1e their wings or legs, so that they were easy to catch
then. The art to give the throw-sticks a direction so that they would
return to the place from where they were thrown, as is the case with the
true boomerang, they did not know.]

Pictures of these knee-shaped throwing-sticks are'published.by\nnlﬂoévell
(1902, p. 201], Sarasin & Sarasin [1905, p. 231] and Kaudern [1929, p.
136/8]. Only Kaudern provides drawings of cross sections of some of these
implements, which appear to be mostly circular and sometimes lozenge-
shaped. It is evident that such sections are not at all suitable for
objects to be carried by the air over long distances. Hence these throw—

sticks should not be classified as (non-returning) boomerangs.

A quite different kind of bbomerang-like implement from Celebes is des-
cribed by Kaudern [1929, p. 230] as follows:

During my stay at the villages of Kelei and Taripa in Ondae in E. Central
Celebes I saw children playing with flat pieces of split bamboo, which
they called tela. These tela measure 20 cm. by 2,5 cm., they have square
ends, and the edges of the long sides are slightly rounded off. One side
of the tela is convex, the other side slightly concave in the middle [...].
The player took two tela in his left-hand between his thumb and fore-
finger, possibly also using his middle finger, holding them like recum-
bent T. One tela should rest on the thumb, pointing toward the player,
the other one on top of it at right angles as seen,in [fig. 9.1]. The
player raised his left hand in a level with his face, or even higher,
and with a smart lash of the bat the top tela was sent flying. A clever
player knew how to make his tela revolve in the air so as to describe

an almost elliptic trajectory and return to the place whence it started.
At Kelei, where this sport, motela, was a popular amusement, there was

a boy who was so clever that his tela always returned to him, so that

he could hit it with his bat, but he was seldom able to make it return

a second time.

As only one of the bamboo laths is launched, the 'tela boomerang" would
seem to be rather different from ordinary boomerangs: it is completely
‘straight. Because of this it would be difficult to make it spin stably
(see §17); the lath tends to rotate around its longitudinal axis. The

function of the other lath held in the launcher's hand must be to provide
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fig. 9.1 Boy playing the tela game.
(copied from [Kaudern, 1929, p. 232]).

a plane support at launch and thus prevent this wrong longitudinal rota-
tion. In order to verify this point, I made a tela from plywood and h
tried to launch it in the manner described by Kaudern. With some skill
it is indeed possible to make a tela spin like a boomerang, and probably
(I did not fully succeed myself) to make it come back as well. After a
bad start the tela soon spins rapidly around its longitudinal axis, and
although this prevents the lath from returning, this rotation may gen-
erate enough lift to carry the tela in the air for a while. (A similar
device is described by Mason [1937, Ch. V] under the name "tumblestick".
The tumblestick can be thrown so as to come back, flying with an exclu-
sively longitudinal spin. However, its mechanics are very much different
from those of real boomerangs.) From Kaudern's description there can
hardly be any doubt that the tela is a genuine boomerang-type implement,

even though it is a border case.

A third type of boomerang-like implement found on Celebes is the cross
bboomerang, which was already mentioned in §2. Kaudern [1929, p. 235]

describes it as follows:
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At the village of Kelei in Ondae the boys also played with a kind of
cross-shaped boomerang. This game they called motela, like the fore-
going.

The cross is made of two flat splints of bamboo, closely similar to the
above described tela. They are lashed together to make a right-angled
cross with limbs of almost equal length. The limbs of one specimen in
my collection, No. 2589, are 25 cm. by 3,3 cm. The corresponding meas-
urements of a second specimen, No. 2590, are 27,5 cm. and 28,5 cm. by
3 and 3,2 cm. [fig. 2.3A]. The thrower with his right hand sends the
cross into the air making it describe a curve approaching an ellips.
Evidently it was far from easy to make a fine shot, at any rate it
required greater skill than the game played with two tela. I only saw
two boys who knew how to handle the cross boomerang properly.

As was mentioned in §2 and shown in fig. 2.3, if one limb has its con-

vex side up during flight, the other 1limb has its concave side up. This

would seem to be an aerodynamic disadvantage.

5. America.

The Hopi or Moqui Pueblo Indians in what is now called Arizona used a
boomerang-like weapon known as "rabbit stick". Hough [1910, p. 348]

gives the following description:

The flat, curved rabbit club, pitshkohu of the Hopi, often called a
boomerang, is not self-retrieving like the Australian weapon, though

it shares the aeroplane nature of the latter; it is similar in form,
but has not the delicate curves shaped to cause a return flight. [...]
The Hopi rabbit stick is delivered in the same way as the Australian,
and its course after it strikes the ground often brings it to theright
or left of the thrower and nearer to him than the farthest point reached
in its flight. It makes one or more revolutions in its flight toward a
rabbit, and if it does not strike the animal directly, its rapid gyra-
tion when it touches the ground makes probably the hitting of any object
within several feet. So far as is known this is the only aeroplane club
used in America. The material is Gambell's oak (Quercus gambelii), and
a branch of the proper curve is selected for its manufacture. One end
is cut out to form a handle, and the club is usually varnished with
resin and painted with a invariable design in black, red and green.
[...].

The Gabrielenos of s. California used a rabbit stick similar to that of
the Hopi; it was 2 ft [60 cm.] in length in a straight line, 1{ in.
(3.3 cm.] across at the handle, and 1} in. [4.6 cm.] across at the
broadest part, with an average thickness of ? in. [1.8 cm.]. It was made
of hard wood, and ornamented with markings burnt in the surface.

An earlier description of the rabbit stick and its use by the Moqui is
given by Parry [1872, p. 399]: '

It is a stick of hardwood flattened on both sides to a thickness of one—
half inch [1.3 cm.], having an average width of two inches [5 cm. ], and
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curved near the middie at an obtuse angle of 130 , furnished at one end
with a handle. This was thrown by a direct whirling motion, aimed at the
legs of the leaping rabbits, and generally, whenever the object was
fairly presented, proving successful in bringing down the game by frac-
turing their legs.

Pictures of rabbit sticks are published by Stevenson [1880, fig. 548/9]
and Cornish [1956, p. 244]. One reference, of doubtful value, to return

behaviour of these implements is provided by Verrill [1927, p. 189]:

In its simplest form the boomerang or rabbit stick is merely a throwing
club designed to knock over rabbits, gophers, and other small game. There
is every gradation from these .crude weapons to carefully curved and de-
signed boomerangs which, if properly thrown, will travel in a circular
path and return to the vicinity of the spot whence they started.

No details concerning the cross sections of these implements can be
found in the literature, but from the measurements given by Hough fol-
lows a thickness over chordlength ratio of at least 0.42, whereas the
measurements given by Parry indicate a value of 0.25 for this ratio.
Anyway the rabbit sticks seem to be rather thick to be called "aeroplane
clubs". Mr. G. Rayner, who recently examined some rabbit sticks in the
San Diego Museum of Man, reaches about the same conclusion (personal

communicatioﬁ, 1974):

Most cross sections were © or O , spans about 2

feet [60 cm.] maximum, most about 18" {45 cm.], made of wood which the
maker had bent to about 150 degrees included. I characterize them as
only semi-aerodynamic, and saw nothing which even approached the crafts-
manship and relative sophistication of the Australian aboriginal
straight flying boomerangs in the museum's collection. Certainly the
California rabbit sticks could not return, and the Hopi rabbit stick I
saw, which was flatter, and appeared to be of recent construction, for
ceremonial purposes, with its included angle of 150 to 160 degrees, and
lack of twist, could not be a return type. The Hopi rabbit stick had a
handle, and was of section ¢* >

Some of these impléments might be carried by the air significantly
farther than would have been possible with circular cross sections,

and therefore some rabbit sticks might perhaps be considered as a simple
kind of non-returning boomerang. Unfortunately, the available literature
contains no information 6n the distance reached by these weapons. (See
also [Callahan,1975].) '
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S0 Boomerangs outside Australia (2).

6. India.

Boomerang-like implements have been reported to be in use among Dravid-
ian peoples in India. The following description by Hornell [1924,

p. 336/8] seems to apply to most of the South Indian "boomerangs' (see
fig. 10.1):

‘[They] have a gripping knob at the narrow or proximal end. Beyond this
handle the width increases extremely gradually to the distal extremity,
at the same time becoming laterally compressed to form a stout wide

blade. The thickest part is usually a few inches from the distal end,
" which is abruptly truncate.

N

fig. 10.1 South Indian "boomerang", made of tamarind wood.

(copied from [Hornmell, 1924, p. 337])

Measurements and drawings of four South Indian ''boomerangs", obtained

in 1922 in the Ramnad district, are provided by Hormell [1924, p. 336/7].
Three of these have flattened (probably elliptical) cross sections. The
tip-to-tip lengths are respectively 51, 51 and 75 cm., the widths at

the distal ends 4.4, 4.2 amd 4.0 cm., and the thicknesses at the distal
"ends 1.7, 1.3 and 2.2 cm. They weigh some 500 g. With such thick cfoss
sections these heavy objects could hardly be carried by the air. They
might be throwing clubs rather than (non-returning) boomeréngs or

perhaps border cases.

As to the use of these implements Hornell [1924, p. 338] states:

The South Indian boomerang is employed primarily in hunting hares; deer
and partridges are also sometimes struck down with this weapon. I was
informed that the short, broad type is used for hunting all these ani-
mals, whereas the long one is never used for birds (partridges). Nome
of these Indian boomerangs can be made to return to the thrower.



For ceremonial uses special "boomerangs" exist. Hornell (1924, p. 339],
referring to specimens in the Madras Museum, says:

Several of these are of ivory, one is of iron or steel [..], and another
is of wood ornamented with metal work which would be at once damaged if
used in hunting. :

Apparently nothing is known about the range of these South Indian imple-
ments. By some it is claimed that they are capable of performing return
flights. Thurston [1907, p- 559] quotes R. Bruce Foote, who found that
these "boomerangs" were used in semi-religious hare hunting parties:
Whether a dexterous Maravar thrower could make his weapon return to him

I could not find out. Certainly in none of the throws observed by me

was any tendency to a return perceptible. But for simple straight shots
these boomerangs answer admirably.

But Oppert [1880a, p. 19] (also quoted by Thurston [1907, p. 556])
asserts, without adducing evidence:

Their name in Tamil is valaZ tadi [...] bent stick, as the stick is
bent and flat. When thrown a whirling motion is imparted to the weapon
which causes it to return to the place from which it was thrown. The
natives are well acquainted with this peculiar fact.

And Lane Fox [1877, p. 30], after having described the "booggrangs" from
Gujarat (see further down), states:

An improved from of this weapon [..] is used by the Marawis of'Madura,

and some of these are much thinner than the boomerang of the Kolis
[Gujarat], and in practice I have found them to fly with a return flight

like the Australian boomerang.

However, Lane Fox gives no details at all concerning his throwing exper-
iments, and he does not define what he means by the term "return flight",
as was also remarked by Davidson [1935b, p. 175]. I might add that Lane
Fox experimented with "fac-similes" rather than with the original imple-
ments themselves. (See also further down under Egypt.) The collection
described by Lane Fox [1877] contains quite some fac-similes of boom-

erangs, e.g.:

179. Fac-simile of another Boomerang, thinner than the preceding and
better adapted for flight. [Lane Fox, 1877,.p. 36]

Moreover, in 1883 Lane Fox (then named Pitt Rivers) says about the re-

turning boomerang:
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This last kind of boomerang, I have contended, is merely a variety of
the war boomerang, and is peculiar to the continent of Australia, and
not found elsewhere, and that it is a development of the plain war boom-
erang, which latter is used by several of the black races bordering on

the Indian Ocean as well as by the Australians. [Pitt Rivers, 1883,
p. 457/8]

Boomerang-like objects have also been reported from another part of
India, Gujarat. Walker [1924, p. 205] describes a wooden specimen:
The kdtar is clumsily made and is only capable of‘travelling in an ap-

proximately straight line, it is about 26" [66 cm.] long, 13/," [4.4 cm.]
wide, 5/g" [1.6 cm.] thick and weighs 9/, oz. [270 g.].

Lane Fox [1868, p. 426, pl. XX] describes

... specimens of the "katureea" or boomerang from Goojerat, from the
India Museum; they are used by the Koolees, according to the ticket in
the Museum, "for whirling at hares, boars, and other wild animals, and.
disabling them." It is of raen wood, thicker and heavier than the Aus-.
tralian specimens, and therefore not adapted to rise in the air and
return. The section 'is equal on both sides, but in other respects it is
precisely identical with the Australian weapon, and appears to be rough-
ly chipped into form.

Sinclair [1897, p. 79], referring to non-returning boomerangs, remarks:

... in British India at least one race, the Kolis of Northern Gujarat,
have the like. These are invariably of "fish" section, varying in
weight, curve, and material; but the commonest and most efficient sort
is of "Babul" wood (Acacta arabica), with the natural curve of the
heart of the wood, somethinglike that of an old-fashioned Turkish sabre,
rather a "knee" than any regular geometric curve.

They are used with great effect on ground-game; much less of course, on
birds. '

These implements would seem to be throwing sticks rather than non-re-

turning boomerangs.

Lommel & Lommel [1959, p. 160, fig. 70] reproduce a picture (copied from
[Mitra, 1923, pl. X]) from a prehistoric cave painting at Singanpur
(Raigarh, east central India), said by them to represent a human figure
holding a boomerang. But it might just as well represent a man having

both arms bent at the elbows and holding a shield and a stick.

Pictures of Indian '"boomerangs' are published by Lane Fox [1868, pl. XX],
[1877, pl. II], Egerton [1896, p. 73], Thurston [1907, pl. XXXVII], Walker
[1924, p. 2051, Hornell [1924, p. 337] and others.
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7. Ancient Near East.

According to Bonnet [1926] (see also [Ebert, 1929, p. 450/1]) throw-
sticks were widely used in the ancient Orient. There seems to be no
evidence that these were anything more than curved sticks, although
Bonnet [1926, p. 109] (on basis of doubtful data) distinguishes two
types: throw-sticks with respectively round and flattened cross sec—
tions. See also [Petrie, 1917, pl. XLIII]. Bonomi [1852, p. 134/5] des~
cribes an Assyrian statue in Khorsabad as representing Nimrod, and the
snake-shaped object in its right hand is said by him .to be the analogue
of the Australian "Bommereng'". But it would be just as easy to take the
object around Nimrod's left arm for a wrist watch. Nies [1914] provides
evidence for the boomerang's being used in ancient Babylonia, in the
form of a table showing the evolution of a cuneiform sign from a pre--
historic pictograph resembling a boomerang:

... the sign we are considéring, whose name is geSpu, whose values are

ru and Sub, and whose meanings point to the boomerang. [Nies, 1914,
p. 31] :

This evidence does not seem very convincing.

8. Africa.

The objects found in Africa south of Egypt which have been called boom-
erangs by many authors can hardly be more than throw-sticks, clubs or
throwing irons. Most of these authors appear:to be adherents of Kultur-
kreise theories, e.g. Ankermann [1905, p. 60], Schmidt [1910, p. 277/8],
[1924, p. 82/3], Foy [1913, p. 249/50], Laviosa-Zambotti [1947, p. 151/4].
They apply the term "boomerang" or '"Bumerang", rather easily it seems,
to many objects of diverse kinds. Yet it is not impossible that some

of these objects might in fact be simple forms of non-returning boom-

erangs.

An early description of the '"trombash" of Sudan or Abyssinia is given
by Baker [1867, p. 511]:

There is a curious weapon, the trombash, that is used by these people
[The Tokrooris] somewhat resembling the Australian boomerang; it is a
piece of flat, hard wood, about two feet [60 cm.] in length, the end
of which turns sharply at an angle of about 30°. They throw this with.
great dexterity, and inflict severe wounds with the hard and sharp

edge; but, unlike the boomerang, the weapon does not return to the
thrower. :
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Pitt Rivers [1883, p. 458, pl. XIV] gives

... illustrations of two of these wooden boomerangs, called trombush

on the upper Nile [...]. It will be seen that they resemble some of the
Australian boomerangs in form and section.

See also [Rutimeyer, 1911, p. 245] and [Bonomi; 1852, p. 135/6].

The Central African throwing irons, called trombash, kulpeda or pinga
can have the most fantastic shapes, see for instance [Schurtz, 1889,
Taf. V] and [Thomas, 1925, p. 136/7]. The blades of these weapons are

in one plane. According to Schweinfurth [1875a, text to pl. XII]:

The "Pingah" is thrown in such a way as to turn in the horizontal plane

round its axis, and by means of its three shanks, no matter in what

position it reaches its aim, in every instance strikes with a sharp
edge.

Lane Fox [1868, p. 429] compares these: throwing irons to boomerangs: -

In all, the principle of comstruction is the same, the divergent lateral
blades serving the purpose of wings, like the arms of the Australian-
boomerang, to sustain the weapon in the air when spun horizontally.

But to classify such African weapons as boomerangs would be far-fetched
indeed. ‘

9. Ancient Egypt.

O0f the regions outside Australia where boomerangs may have been in use
the most interesting case perhaps is ancient Egypt. Many Boomerang-like.
objects have been found, from the 6th, l1th and 18th Dynasties (respec-
tively about 2300, 2000, 1400 B.C.), for instance. Egyptian wall paint-
ings showing throw-sticks being used by fowlers are published by Wil-
kinson [1878, Vol. 2 p. 104, 107, 108], Erman [1885, p. 322], Trust.
Brit. Mus. [1972, 48] and others. The depicted throw-sticks all have a
slight S curve, whereas the specimens actually found have planforms
resembling those of Australian poomerangs. |

Fowling in the swamps of the Nile was a sport practised by the Egyptian
nobles from early times. As a desirable occupation in the Next World it
was represented on the walls of their tombs, the deceased owner being

shown in the act of throwing his boomerang at birds rising from the
swamp. [Trust. Brit. Mus., 1972, 48].

Wilkinson [1878, Vol. 2 p. 104/5] states:
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The use of the throw-stick was very general, every amateur chasseur
priding himself on the dexterity he displayed with this missile: and
being made of heavy wood, flat, and offering little surface to the air
in the direction of flight, the distance to which an expert arm could
throw it was considerable; though they always endeavoured to approach
the birds as near as possible, under the cover of the bushes or reeds.

And he remarks [Wilkinson, 1878, Vol. 3 p. 325 footnotel:

This calls to mind the boomerang of New Holland [= Australial; but the
peculiarity of this last, of coming back to the thrower, did not belong
to the Egyptian throw-stick, which was also more straight.

However, there are at least three cases of authors claiming Egyptian
boomerangs to be of the returning type. Erman [1885, p- 323] gives a
lively description of an Egyptian fowler's boomerang hitting its target
with much force and then returningbin an elegant curve to the thrower.
It is significant that in Erman's revised edition of 1923 this passage
has been deleted [Davidson, 1935b, p. 177]. The sécond case is that of
Lane Fox (again). In 1868 he describes "an ancient Egyptian boomerang

of wood, in the British Museum" as follows [Lane Fox, 1868, p. 427]:

It is of hard but light wood, the section is symmetrical on both sides,
and not flat on one side, like some of the Australian boomerangs; it is
somewhat broader at the ends than in the middle of the blade.

In 1872 he writes [Lane Fox, 1872, p. 324]:

I have practised with the boomerangs of different nations. I made a fac
simile of the Egyptian boomerang in the British Museum, and practised
with it for some time upon Wormwood Scrubs, and I found that in time I ‘
could increase the range from fifty to one hundred paces, which is much
farther than I could throw an ordinary stick of the same size with ac-
curacy. I also succeeded in at last obtaining a slight return of
flight; in fact it flies better than many Australian boomerangs, for

they vary considerably in size, weight and form, and many will not
return when thrown.

In 1877 the "slight return" has become "returning to within a few feet"
[Lane Fox, 1877, p. 31]:

In order to ascertain by experiment whether this was really a boomerang,
I had these fac-similes made with great care from the original of dif-
ferent kinds of wood, and they have been found by experiment to fly like
a boomerang, ranging about 100 paces, and returning to within a few feet
of the thrower. This experiment settles the question of the use of the
‘boomerang by the Egyptians, which, owing to the ill-defined representa-
tions of them in Egyptian sculptures, was previously open to dispute.
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But in 1883 the same author (as was mentioned earlier under India)
states that returning boomerangs are "peculiar to the continent of Aus-
tralia, and not found elsewhere" [Pitt Rivers, 1883, p. 457]. It seems

not unlikely that the experiments reported by Lane Fox were biased.

The third case of Egyptian boomerangs reported to be of the returning

kind is published by Hayes [1953, p. 284] of the Metropolitan Museum of
Art in New York:

Two examples from tombs of the Eleventh Dynasty at Thebes are of the
so-called "return type" - wooden blades, flat on one side and slightly
convex on the other, curved to an angle of about 140°, with a rounded
handle end and a blunt hitting end slightly broader than the rest of
the blade [...]. An exact reproduction of one of these weapons was
found, when cast, to fly out a long distance, make a sharp turn, and
come back to the thrower. The boomerang so tested was made to be thrown
with the right hand, and this of course was. usually the case, . although
similar weapons for left-handed hunters are also known.. -

Unfortunately no details are available as regards the way the copy was

made and thrown. The records of the department of Egyptian art of the

Metropolitan Museum show that

... one of our boomerangs was copied sometime in 1930 or 1931 (probably
here in the Museum workshops), but the manner in which it was copied is
not known. The description of the flight of the model is as follows:
"long cast, sharp turn, and will return to thrower." There are no
further notes regarding experiments with this or other boomerangs.
[Miss V. VonderPorten, personal communication, 1973]

It would be worthwile to carry out new experiments with very carefully

made replicas of ancient Egyptian boomerangs.

A very essential feature of any boomerang is its cross section. Pitt
Rivers (= Lane Fox) [1883, pl. XIV] presents drawings of several Egyptian
boomerangs with cross sections. However, these are too small to show

much detail, although the author has

... shown clearly by the sections attached to each that they are true

flat boomerangs, and not merely round curved sticks... [Pitt Rivers,
1883, p. 457]

Nies [1914, p. 28/9] describes a boomerang of the "XVIII Dynasty or

earlier" as follows:

It is slightly flat on one side, convex on the other, and has a rather
wide angle [...]. It weighs 6 ounces [170 g.], is 4.3 cm. wide, 1.3 thick
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at the middle, 54 cm. round, 46 cm. across, and the arch is 13.5 cm.
high. The angle I haveonot taken. [...]. It does not seem to have the
skew or elevation of 2° to 3° at the points, which Thomas [1910] states
are necessary to give the weapon its peculiar flight.

Pictures of boomerangs found in the tomb of Tutankhamen (~ 1350 B.C.)
are published by Carter [1933, pl. LXXVI, LXXVII] and Desroches-Noble-
court [1963, p. 271]. Carter [1933, p. 142] describes these objects as

follows:

Boomerangs and throw-sticks were used in Egypt from the earliest to the
last dynasties. The boomerang was certainly used for fowllng, the throw-
stick probably in warfare. Both kinds are represented in this collec-—

tion. Of the first type among this lot - boomerangs proper - the return
and the non-return kinds are recognizable, even though the general form
of both weapons is much the same, i.e. curved in sickle-shape, or two

straight arms at an angle, the main, or rather the essential, difference
being the skew (twist) of the arms, which are exactly opposed in the two
kinds. The non-return weapon was apparently thrown like the return type,

its reverse twist or skew helping it to travel a greater distance than
the ordlnary throw-sticks.

Our Spec1mens of boomerangs are made of a hard wood which I am unable
to recognlze, they are either painted with a polychrome pattern, or
bound in part with a bark resembling that of the birch tree [...]. The

ritualistic specimens are of carved ivory, mounted with gold caps at
the ends.

The throw-sticks here are either of fantastic form [...] or of simple
curved shape made of a hard wood. Those made of ebony with ends of gilt
are probably ritualistic, like the example made of gilt-wood capped
with faience, or those solely made of faience.

It is remarkable that the boomerangs generally are wider at the ends
.than in the middle.‘Many of them are partly covered with bark. Howard
Carter's original (unpublished) descriptions are accompanied by sketches
of planforms as well as cross sections. Some of Tutdnkhamen's boomerangs
have symmetrical biconvex sections, but others have asymmetrical or even
plano-convex sections. The measurements of 18 of the wooden boomerangs as
described by Carter in these unpublished notes vary within the following
limits: tip-to-tip length 26.5-64.0 cm., width at the centre 2.8-5.2cm.,
thickness at the centre 0.55-1.5 cm., thickness over chordlength ratio
at the centre: 0.20-0.42. (Median values resp. 50 cm., 3.8 cm., 1.l cm.,
0.29). Carter's very intéresting data (as well as other material re-
lating to Egyptian boomerangs, see fig. 10.2) are to be published in

the near future by Mr. V. Davies, Griffith Institute, Ashmolean Museum,

Oxford, and Dr. P.J. Musgrove, Department of Engineering and Cybernetics,

University of Reading (England).
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g, | AT A,

EGYPTIAN 6th DYNASTY ¢ 2300BC. Brit. Mus. No. 45213

Length 7I5mm; Av.Width 39mm; Av. Thickness. [3mm; Weight . 200g; Planform Camber 15-7%;
Rodus of Gyration 2/7mm; Incidence. Right Wing Tip+ 420, Lett Wing Tip-1°.
Dihedral, Indeterminate due to crack. '

fig. 10.2 Egyptian boomerang;

measurements and drawing by Dr. P.J. Musgrove.

From the available literature it appears that ancient Egyptian boomer-
angs can have various cross sections, often not unlike those of Austral-
ian boomerangs. Therefore it seems possible that some of them are of the
returning kind, and purposely made to be such, whereas some others may
be non-returning or even straight-flying boomerangs. Further research

on the flight properties of ancient Egyptian boomerangs would be ex-
tremely interesting!
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§11 Boomerangs outside Australia (3).

10. Ancient Europe.

Ferguson [1838a] was the first to study non-Australian boomerangs. His
learned philological paper is mainly concerned with examining classical
writings in order to find evidence for the use of the boomerang in an-
cient Europe. It is apparently the only study of its kind. The strongest
case of a boomerang-like implement certainly is the cateia, mentioned by
Virgil, Silius Italicus and Valerius Flaccus [Ferguson, 1838a, p. 22/3].
From these passages the cateia appears to be some sort of throwing stick
or club. The opinion that the cateia could be a returning boomerang rests

on a description by Isidore, Bishop of Sevilla (Spain) in his encyclo-
paedia (~ 624 A.D.): ‘

He describes the Cateia as a species of bat, of half a cubit in length,
which, on being thrown, flies not far, on account of its weight, but
where it strikes, it breaks through with excessive impetus. And iIf it
be throum by one skilful in its use, it returns back again to him who

dismissed it. The passage occurs in the "Origines," under the head
CLAVA, viz.: . :

"CLAVA est qualis fuit Herculis, dicta quod sit clavis ferreis invicem
religata, et est cubito semis facta in longitudine. Haec et Cateia, quam
Horatius CaZam dicit. Est genus Gallici teli ex materia quam maxime
lenta; qua, jacta quidem, non longe, propter gravitatem, evolat, sed
ubi pervenit vi nimia perfringit. Quod si ab artifice mittatur, rursum
redit ad eum qui misit. Hujus meminit Virgilius dicens

'Teutonico ritu soliti torquere Cateias.'
Unde et eas Hispani Teutones vocant." - Isidor. Origin. 1. xviii.ec. vii.
Thus, all the characteristics of the Boomerang, its use, its shape, its
mode of projection, its extraordinary impetus, and its peculiar recip-
rocating flight, belong to the Cateia, from which it cannot but be con-
cluded that these were the same weapon. [Ferguson, 1838a, p. 23/4]
This passage by Isidore has been quoted by many others, e.g. Lane Fox
(1868, p. 430], Burton [1884, p. 35], Franz [1928, p. 805/6], Feldhaus
- [1931, p. 230], Lenoch [1949, p. 51]. But is this clava, cateia or caia
really a returning boomerang? A different interpretation is possible.
The weabdn could very well be only a throwing club made "of extremely
tough wood" ("ex materia quam maxime lenta"). It "flies not far because
of its weight", which indicates a weapon for fighting at rather close
quarters. That it resembles the club of Hercules makes its boomerang

behaviour even less likely, instead of making Hercules' clava a boom~

erang as well [Ferguson, 1838a, p. 34/7]. It seems utterly improbable
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that such a heavy club-like weapon would be able to return as a boomer—
ang. If it would return at all this could be due to its bounding back,
from the target, after being "launched by a skilful man". There seems
to be nothing in Isidore's description against this interpretation.
Ferguson's identification:of various other weapons (e.g. aclys, ancyle)
with returning boomerangs is even more improbable, and to a great extent
based on ethymological speculations. Thor's mythological hammer is sup-—
posed by Ferguson [1838a, p. 37/8] to be a T-shaped returning boomerang,

and many more curious inferences are drawn ir Ferguson's paper.

Lehmann-Nitsche [1936] mentions the use of throw-sticks by the Greeks,
Etruscans and Romans, in (ritual) rabbit and hare hunting. But these
rabbit-sticks probably are not boomerangs. Thus it seems that the evi-

dence for (returning or non-returning) boomerangs in ancient Europe.is

extremely weak.

11. Prehistoric Europe.

Although there is only scarce evidence for the presence of boomerangs
in prehistoric Europe, it seems to be sufficignt for several authors
to draw far-reaching conclusions from it. Mostly these authors are ad-
herents of Kulturkreise theories, e.g. Franz [1928], Laviosa-Zambotti
(1947], Narr [1952]. As an example consider the following passage from

a paper called "Alteuropdische Wurfholzer", which is fairly typical:

‘Von den Kulturkreisen der Ethnologie fithrt den Bumerang als .typisches.
Gut die exogam-gleichrechtliche (= Bumerangkultur), die sich am
verhaltnismissig stirksten in der Siudsee (Australien) und in bestimmten
Teilen Afrikas (Nilquellgebiet) erhalten hat; doch ist der Gedanke des
Wurfholzes von seinem alten Zentrum aus weit gewandert, wie die heutige
Verbreitung beweist. In vorgeschichtlicher Zeit hat er sich besonders
.in Vorderasien breit gemacht, ferner in Afrika [...]. Wahrend sich in
letzterem Gebiete aus dem Wurfholz das Wurfmesser entwickelt hat, ist

- in Vorderasien aus ihm ein metallener Krummsibel entstanden [.:.].

Wenn mann unsere Fig. 10, eine Kupferwaffe aus Babylonien ansieht, so
fihlt man sich sofort an das Holzstuck Fig. 9 aus dem Brabandsee
erinnert; nur ist der kurzere Teil bei der fortgeschrittenen Metall-
waffe an der Spitze nach oben gebogen, ein Zug, der jedoch die enge

typologische Verwandtschaft nicht zu verschleiern vermag. [Franz, 1928,
p. 802]

The terms "Bumerang" and "Wurfholz" are interchangeablyused, and a dis-
tinction between returning and non-returning boomerangs, throw-sticks

and even curved swords seems to be unimportant to some Kulturkreise-

75



minded authors:

Ob es sich dabei tatsachlich um Bumerangs sensu stricto, also um Kehr-
wiederkeulen handelt, ist naturlich nicht mehr fest zu stellen, aber
auch relativ unwichtig, da die Wurfkeule fur Jagd und Krieg auch in
Australien nicht dieses Prinzip. verkorpert. [Narr, 1952, p. 1020 foot-

note]
Indeed, the extant evidence oftey, is so meagre that it does not allow

to asses the function and use of a prehistoric boomerang-like object.

The evidence is of two kinds: cavepaintings and finds of actual objects.
A cavepainting in Niaux is said by some to contain representations of
boomerangs [Sollas, 1911, p. 234/5], but there is hardly even a super-
ficial resemblance. The same applies to a picture from Pindal, repro-
duced by Schmidt [1934, p. 114]. The cavepaintings in Minateda, as pub-
lished by Breuil [1920], contain several little curved figures, but, in
contrast to the depicted bows-and-arrows, their use is not at all clear-
ly indicated. The only rather convincing European "boomerang" cave-
painting is the one réproduced in [Kuhn, 1952, Taf. 46] (copied in
[Lommel & Lommel, 1959, p. 160]); it comes from Albarracin (Spain). But
of course the "boomerangs" represented in this rockpainting could just

as well be mere curved throwing sticks.

A most remafkable find of wooden objects resembling boomerangs is that
of Braband S4 (Denmark, ~ 4000 B.C.) [Thomsen & Jessen, 1906a,b]. These
objects are remains from the Ertebglle culture. Of 16 peculiar wooden

objects one in particular might be a sort of boomerang. See fig. 11.1.

fig. 11.1 "Boomerang" from Braband S¢, ~ 4000 B.C.
(copied from [Thomsen & Jessen, 1906a, p. 42])

76



It is described in detail by Thomsen & Jessen [1906a, p. 41/2]=[1906b,
p. 199/200]. The implement is made of maple wood, its tip-to-tip length
is 41.5 cm., its greatest width 5.5 cm. It tapers toward both ends,
which are pointed. One arm has an oval cross section (thickness/chord

s~ 0.58), the section of the other arm is flattened and plano-convex
(thickness/chord =~ 0.26). When thrown as a boomerang ( in its original
condition), it would undoubtedly have flown better than a mere throw-
stick, but it probably would not have returned. This implement could
be a non-returning boomerang, although it is difficult to understand
why only one arm has a flattened cross section. Several of the other
wooden objects found at Braband S¢ might be throw-sticks, but none have
cross sections suitable for boomerangs. See [Thomsen & Jessen, 1906a,
p. 43/7) = [1906b, p. 201/5). (Franz [1928, p. 800/1] is eager to take
all these wooden objects, including the straight ones, for throw-
sticks).

Schoetensack [1901, p. 138/40] describes two curved, 8-11 cm. long, pa-
laeolithic objects cut from reindeer antler, found in Dordogne (France).
These are considered by some to be toy boomerangs. Rutimeyer [1911,

P 245]mentions a Copper Age "Wurfholz" found near the Bieler See
(Switzerland). His accompanying figure shows an axe-shaped wooden im-
plement. Schwabedissen [1951, p. 309] represents several wooden objects
from Schleswig (Germany), these do not at all resemble boomerangs. Narr
[1952, p. 1020] sees boomerangs and/or throw-sticks spread all over
Europe, he supports his opinion by referring to [Breuil, 1920], [Franz,

1928], [Schmidt, 1934] and [Schwabedissen, 1951].

Muller-Beck [1965, p. 55/6] describes some wooden objects from Seeberg
and Egolzwil (Cortaillod culture) in Switzerland. One suéh object con-
sists of a straight flat part with rectangular cross section joined

at a right angle to a straight handle of circular cross section,

the overall shape resembling that of an axe. Miiller-Beck [1965, p. 56]
remarks that it is suited to be used as a striking implement, and he
tentatively suggests the possibility of the object's having been used
as a throw-stick. But its peculiar form impresses one as being care-
fully designed for some specific purpose (unknown to me), whereas it

is not a form one would expect for a carefully designed throw-stick or
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boomerang.

Finally, an oak boomerang from the Iron Age (~ 300 B.C.) has been un-
earthed near Velsen (Netherlands). Pictures of it are published by

Calkoen [1963a, p. 74] and Hess [1973b, pl. XLIV].

. The distance from tip to tip is nearly .39 cm., the arms are 3.2-3.7 cm.
wide and 0.7-0.9 cm. thick. In the centre part of the bend the thickness
at some points is 1.0 cm. The angle between the arms is slightly greater
than 110°. The grain of the wood follows the general shape of the ob-
ject. [...].

The boomerang appears to be carefully worked. One side, which I call the
upper side [...] is convex, the other side [...] is less convex or flat,
and even slightly concave at one end. Probably all of the notches to be
seen on this side were made during the excavation. The boomerang's sur-
face may have been smooth originally. The arms of the boomerang do not
exactly lie in one plane, and they are twisted near the ends. Probably
the boomerang was designed flat, with perhaps a sllght twist at the
ends. [Hess, 1973b, p. 304]

Soon after the boomerang was found in 1962, Mr. M. Ingen Housz made a
plywood copy with which he was able to obtain return flights [Calkoen,
1963b, p.'37], but no details were published. This copy was made after
Calkoen's drawing rather than based on detailed measurements of the
original object itself [M. Ingen Housz, personal communicatiom, 1972].
The original boomerang unfortunately was badly deformed during preser-
vation. However, excellent moulds of each of its three pieces are kept
at the Rijksmuseum voor Oudheden at Leiden, Netherlands. From these
negatives a positive cast (epoxy resin) was made. [Hess, 1973b, p. 303/4])
In order to investigate the flight properties of the Velsen boomerang,

I made a plywood copy, based on the epoxy cast, which could be used in

field experiments:

The contour of the copy was sawn out of 0.9 cm. eight-layered birch
plywood. With a file the arms were carefully shaped so that the thick-
ness of the copy matched that of the cast [fig. 11.2a] at some 60 meas-
ured points. The upper and underside were carefully made to resemble
those of the cast, but the surfaces were sanded smooth and the arms
were kept in one plane, so that the probable warp of the object was
corrected. However, some twist at the ends was provided [i.e. retained].
During the throwing experiments the mass of the plywood model was ap-
proximately 72 g, its density O. 73g/cm [Hess, 1973b, p. 304]

The mass of the original oak boomerang may have been somewhat greater

or smaller.

The arms of the copy (like those of the original) have cross sections
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fig. 11.2 Boomerang from Velsen (~ 300 BC).

a) Thickness map of boomerang shown from the upper side.

Thin drawn line: thickness = 0.6 cm.,. dotted line: thickness = 0.8 cm.
CM: centre of mass. w: direction of boomerang's spin.

b) Cross sections cut at places marked by nos. 1-10. Horizontal line:
plane of support. Solid lines: present state of sections, dotted lines:
sections obtained after correction for probable warp of original.

1 |
(m) 20 15 10 5 o

fig. 11.3 Typical return trajectory traversed by the plywood copy.
a) Bird's-eye view, b) side view.
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[fig. 11.2b] which would not seem very favourable for airfoils: a thick-
ness of more than 20 per cent of the chord length, no smooth leading
edge, low Reynolds numbers (Re < 10°). Nevertheless the copy was capable
of completing return trajectories. Its spin, however, visibly decreased
during the flights because of the airdrag [...]. A typical return tra-
jectory completed by the copy has been sketched [in fig. 11.3].

The throwing experiments were done in the open air on grassland. The
boomerang was thrown righthandedly in a direction of 20°-30° upward.
The angle between the boomerang's plane of rotation and the horizon was
70°-80°. The greatest distance, measured horizontally, between boomer-
ang and starting point was 20-21 m. The highest point of the trajectory
was 15-18 m. above ground level, as determined with tape measure and
protractor. (Lower flightpaths were possible, but only as open loops.
‘Perhaps with strong wind low return trajectories could be realized.)
The duration of the flight was 6-7 seconds. The initial forward and ro-
tational velocities were not measured; my rough estimates are 25 m/s
and 13 rev/s respectively. ,

The wind speed, measured at 2 m. above ground level, was very low during
the experiments; it varied between } and Im/s (probably the wind was
somewhat stronger at greater heights). The boomerang was thrown.some
60° to the right of windward. [Hess, 1973b, p. 304]

It should be remarked that it was not very‘éasy for the thrower (H.
Rollema) to make the boomerang return completely. When not thrown care-
fully and at high speed, it would describe only something like a half
circle. The following conclusion may be drawn:

The plywood copy thus behaves like a right-handed returning boomerang
of moderate quality. Naturally the original boomerang may have differed
somewhat in shape and mass from my own copy and hence may have had
flight-paths of different shape. But it is very probable that it was
capable of returning to its thrower if properly thrown. Possibly it had
first to be adjusted over a fire when it was warped. [Hess, 1973, p. 305]
(As to the methods of adjusting boomerangs see §5). That the Velsen im-

plement was actually used as a returning boomerang is not proven however,
only that it could have been used as such. It is remarkable that
The boomerang could also be made to fly a distance of some 50 m. along

a nearly straight horizontal line, by throwing it left-handedly (oppo-

site spin), with its plane of rotation approximately horizontal. [Hess,
1973b, p. 304]

Unfortunately the Velsen boomerang is an isolated case, it would stand
up much stronger if it would be corroborated by similar prehistoric

finds. However, prehistorié wooden objects are rarely preserved. Even
if boomerangs would have been widely used in Europe, only a tiny frac-

tion of them would eventually be found by archaeologists.
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Coneclusion.

Most of the available relevant data on possible non-Australian boomer-
angs have been mentioned in §§9, 10, 11. A more comprehensive. survey of
the literature is given by Lenoch [1949] in his dissertation "Wurfholz
und Bumerang". He attempts to discuss all publications concerning throw-
sticks and boomerangs, from whatever age.orvplace,onaeatth, (His biblio—
graphy contains some 550 titles, but part of these are not relevant to
the subject). But although Lenoch's study constitutes an admirable éolf
lection of otherwise scattered data published by others, it hardly offers
new insights. Also Lenoch does not try consistently to distinguish between
throw-sticks and boomerangs, which admittedly would not always be a
simple matter. A shorter, but critical survey is given by Davidson
[1935b, p. 169-180]. Lommel & Lommel [1959, p. 161] draw a world map
showing '"die Verbreitung :des Bumerangs'". But the indicated regionsvafe

those in which throwing sticks have-been found, rather than true- boom-—

erangs.

It seems likely that sticks have been thrown almost all over the world, at
any time. Implements specially adapted for being thrown (throw-sticks,
throwing clubs etc.) also are, or have been, exteﬁsively used in various
regions. But as regards boomerangs the evidence is scanty, except, of
course, for Australia. Special types of throwing implements were in use
on the New Hebrides, among the Pueblo Indians, in India, north Africa
and prehistoric Europe. But most of these would be border-cases rather-
than real (non-returning) boomerangs. In ancient Egypt possibly non-
returning as well as returning boomerang were used, but more research
is necessary to settle the question. One of the Braband S¢ implements
might be a kind of non-returning boomerang. The Velsen boomerang is one,
hitherto isoléted, case of a returning boomerang in prehistoric Europe.
The tela and cross boomerang of Celebes are returning implements, but
only used as children's toys. Although they are a class apart, techni-

cally they should be termed boomerangs.

A final remark might be made about the "European" boomerangs produced
~ in Australia, Europe, America, Japan, etc. - ever since the returning

boomerang became popular in Dublin around 1837 (see [Dubl. Univ., 1838]).

81



Boomerangs are being increasingly made and sold overseas. London toy-
shops feature "safe" boomerangs for children. These are small and made
of balsa. Various wooden and plastic versions are on sale in America,
including a model for children, a sports version for women, and aheavy
one for men. Another model is patriotically fashioned in the style

of an American eaglewith outstretched wings and is called the "Boomer
Bird." Japan and France are making and selling boomerangs on the home .
market. The Japanese versions, complete with instructions for throwing;
are sleek, a foot long, and of plastic in gay colours. The French luxury
model is of aluminium and has special finger grips and padding on the
points. [Stivens, 1963, p. 10] '

Although these boomerangs are ultimately derived from Australian Abo-
riginal boomerangs, they may be considered as tybical products of the
"Western Civilisation". Sometimes modern aerodynamic knowledge is in-
corporated in their design, new materials are used (plywood, metal,
plastics, etc.) and often they are mass-produced. Also new forms may

be tried (see for instance [Mason, 1937]). All of them are meant to be
truly returning, but many of the commercially sold boomerangs are fail-
ures in this respedt. One example:

The Brist Boomerang, with which Brist is played, will go down in history
as the most wonderful novel invention of the age. If the following in-
structions are carefully observed, anyone can, with but little practice,
do with it such incredulous things, that were you to have appeared among
your friends for half an hour's entertainment, a century ago, you would
duly have been tried and convicted of witchcraft. [Bristow, 1912]

A special class is formed by the boomerangs designed and thrown by indi-
viduals either for fun or sport or to satisfy their scientific curios-

ity.
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§12 The origin of boomerangs.

"How were boomerangs invented?" or '"How could the_improbable'idea of
making such an extraordinary implement have occurred to the Aborigines?"
This question inevitably turns. up.when somebody for the first time
watches a returning boomerang fly through the air. A somewhat different
question is whether Australian boomerangs originated in Australia or
whether they were imported there from other parts of the world. To both

questions the answers are unknown.

When the first Europeans arrived in Australia, boomerangs were already
there. Dampier, who visited the coast of Western Australia in 1688, may
have been the first to mention boomerangs:

Some of them had wooden Swords, othershada sort: of Lances. The. Sword:

is a piece of Wood shaped somewhat like a Cutlass.. [Dampier, 1729,
p. 314]

Cook, who landed in Botany Bay in 1770, writes about the Aborigines he
encountered there:

... all of them were armed with long pikes, and a wooden weapon shaped
somewhat like a cimeter [= scimitar].

... each of these men held in his hand the weapon that had been des-

cribed to us as like a cimeter, which appeared to be about two feet
and a half long ... [Cook, 1773, p. 491]

The only Australian boomerang radiocarbon dated so far appears:to be
the one found in the gravel beds of the Clarence River near Grafton.
The radiocarbon date is 140 + 60 BP (Gak 1299), but since there are
possibilities of contamination, it is best to regard the age of this
specimen as "No earlier than 1550 A.D.". [Dr. Isabel McBryde, persomal

communication, 1973].

Very recently (January 1974) some exceedingly ancient boomerangs have
been unearthed by Mr. R. Luebbers from a peat bog in south east South-
Australia [Luebbers, 1975]. No radio carbon dating has been done as yet,
but probably these implements stem from 9000 B.C. or earlier.

Asked how the conclusion that the boomerangs were at least 11,000 years
old was determined, Mr. Luebbers explained that a peat layer some 50.

centimetres (cm) above the artifact-bearing level had been radiocarbon
dated at 9000 years. ‘
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"We expect the dates of the boomerangs to be at least 2000 years older,"
Mr. Luebbers said. "Our knowledge of the prehistory of the area indi-
cates the implements would not be any older than 15,000 years, because

at that time it was too dry and peat could not have formed." [Bransdon,
1974, p. 2]

Mr. R. Luebbers (personal communication, 1974) adds:

... at least three boomerangs were recovered complete although only

one was intact. It measures 39 cm across and is 2.75 cm wide - these
measurements taken while the wood is still wet. An additional four boom-
erangs seem to be represented by wing tips but all of these are in pieces
at the moment. So I can provide mere impression and not facts. In gen-
eral each specimen displays aerofoil design features of two broad types;
1) thickly ovoid with thickness three quarters of width and 2) less
thick, broader wings with flat undersides. Spans probably do not exceed
45 cm. Quite clearly the upper surfaces are more convex. It would be
pointless however for me to describe wing characteristics further until
the specimens are dried and reconstructed. We expect this to occur in
six months time, at which time proper photos can.be. taken and. experi-

mental flight models made.
This extremely interesting find at once shifts the known age of Austral-
ian boomerangs far back in time, even beyond the Danish and Dutch pre-

historic boomerangs.

Representations of boomerangs in Aboriginal rock art (see [McCarthy,

1958b, 1960a]) also indicate their old age:

Both returning and non-returning types are shown in rock engravings in
the outline, Linear design, and Fully Pecked phases [...] which indi-
cate that the boomerang is quite ancient in:Australia, and in rock
paintings in various phases of local sequences. It is:interesting to
note that returning boomerangs are painted in rock shelters on Groote

and Chasm islands, in the Gulf of Carpentaria, where they are no longer
in use. None of these paintings or engravings has been radiocarbon

dated. [Mr. F.D. McCarthy, personal communication, 1973]

The oldest reliably dated case of Australian rock art, without representations

of boomerangs however, is about 20,000yeérs old [Edwards & Ucko, 1973,p.275]‘

Did the first Australians take the boomerang (or a prototype) with them
when they came from South East Asia, or did they import the boomerang
at a later time? Or was the boomerang developed in Australia (and per-
haps in some other parts of the world as well)? Lommel & Lommel [1959,
p. 158/9], for instance, take a diffusionist standpoint:

 Australien hat offensichtlich sehr frihe und altertimliche Kulturformen
und Gerate bis in verhaltnismissig junge Zeit bewahrt. Zu den
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bemerkenswertesten Gerdten frither Epochen, die sich in Australien er-
halten haben, gehort der Bumerang und die Speerschleuder. Beide Gerite
finden sich schon inpaldolithischen Hohlen Sudfrankreichs. '
Lenoch [1949] hat das ausseraustralische Vorkommen des Bumerangs im vor-
geschichtlichen Spanien, in Nordafrika, in Indonesien und Melanesien
und verschiedenen Gebieten Amerikas nachgewiesen.

Die Speerschleuder findet sich wieder im O0stlichen Asien und Nord-,
Mittel-, und Sudamerika. Es scheint, als ob sie einen ndrdlichen, der
Bumerang einen sidlichen Weg bis zu den Kiisten des Pazifischen Ozeans
genommen habe. Beide Stromungen konnten sich in Australien vereint
haben. ’

This argument is poorly supported by data, see §11. Davidson [1935b,

p. 167] is of a quite different opinion:

On the basis of Australian evidence, there seems to be no good reason

for believing that boomerangs are not indigenous to Australia. In this
instance the geographical distribution .of boomerangs:as a class appears-
to be illuminating. As we have already seen, both ordinary and. returning
boomerangs ‘are lacking in ‘the extensive  area comprising the three north--
ern peninsulas. It is presumable that they have never been used in the
northern Kimberley district and northern North Australia, for we find
the ordinary varieties diffusing into these areas at the present time.
The crucial place where boomerangs seem to be unknown, but where we
would expect to find some traces of them if they had been brought into
Australia from a foreign source, is the Cape York Peninsula. For this

region, Roth informs us that they are lacking north of the Palmer and
Mitchell rivers.

I am inclined to agree with Davidson that boomerangs probably are indig-
enous to Australia. Why would the "invention" of the boomerang be eas-
‘ier, or more probable, outside Australia than inside? This brings us-to
the question posed right at the beginning of this section: "How were
boomerangs invented?". A reasonable guess is made by Davidson [1935b,

p. 168]:

In a culture where throwing-sticks undoubtedly have been in use for a
great period of time, we do not have to look far for a possible and
most reasonable ultimate basis from which boomerangs could have been
derived. It should not be implied that there was necessarily a direct
change from a throwing-stick to a boomerang by the reduction in height
of the cross—section and the giving of a greater curvature, although
such could have been and may have been the case. It seems much more
reasonable to suppose that such a change, if it actually happened, was
gradual and that considerable time may have elapsed before what we
recognize as a boomerang was produced.

Essentially the same idea was put forward by Lane Fox [1868, p. 425]:
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Instinct prompts him to eat, little better than instinct would enable
him to select from amongst his weapons such as are found most suitable
for obtaining food, and we have already seen how he may have been led
to the adoption of such an instrument as the boomerang, purely through
the laws of accidental variation, guided by the natural grain of the
material in which he worked.

In some more detail [Lane Fox, 1877, p. 29]:

A curved stick, when thrown from the hand rotates of its own accord,
and it would soon be discovered that a flat curved stick formed by
splitting a branch in half down the centre would fly further than a
round one. The savage would be entirely ignorant of the reason for this
[...]; but he would find in practice that the thinner he made it the
further it would fly, and this really comsitutes the generic character-
istic of the boomerang ...

And as regards returning boomerangs:

Finally, it would be discovered that when the boomerang was slightly
twisted in a particular direction, like the two arms of a windmill set
in oblique planes, it would screw itself up in the air. But this he
would arrive at more probably by imperfect workmanship, owing to the
difficulty of constructing the weapon on a true plane than from any
knowledge of its principle of action. [Lane Fox, 1877, p. 30]

Apart from the supposed necessity of the twist in returning boomerangs

(see §4), this seems to be no unreasonable picture. Sutton [1912,

p. 218] puts it slightly differently:

Maybe one of the remote ancestors of the tribe, leaving his "war boom-
erang” out in the dew one night, found a day or two later that the
flight had changed from a straight path to a more or less circular one;
and probably his sporting instincts and curiosity developed the idea,
chiefly for amusement, perhaps also for use in hunting and sport.

And Davidson [1935b, p. 168] says:

In respect to returning boomerangs, there seems to be no reason for
doubting, on the basis of Australian evidence, that they have been
derived from ordinary boomerangs somewhere in Australia. They, too,
are not only lacking in the same northern peninsulas, toward which
boomerangs are now diffusing, but their origin can be explained most
logically in the similar non-returning boomerangs with which they are
always associated. :

Extensive experiments relevant to the evolution of straight-flying
boomerangs are reported by Callahan[1975]. Hardly more can be said at
present on the origin of boomerangs, but the curious, quite different,

eucalyptus leaf hypothesis should be mentioned:
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Mr. Hubert de Castella has suggested that the Aborigines derived the
invention of the Wonguim from observation of the shape and the peculiar
turn of the leaf of the white gum-tree. As the leaves of this tree fall
to the ground, they gyrate very much in the same manner as the Wonguim
does; and if one of the leaves is thrown straight forwards, it makes a
curve and comes back. Such an origin for a weapon so remarkable is not
to be put aside as unreasonable. It is very probable that if children
played with such: leaves, some old man would make of wood, to please-
them, a large model of the leaf, and its peculiar motions would soon
give rise to curiosity and lead to fresh experiments. [Smyth, 1878,

p. 316]

See also [Campbell, 1882, p. 460], [Lumholtz, 1889, p. 52], [Lenk-
Chevitch, 1948, 1949], [Williams, 1952]. Campbell Ford [1913, p. 117]

describes an Aboriginal game, watched in 1883:

Later, piling a lot of bushes on the fire to make a big flare, they
started playing "Bindjhera," a game in which the dead leaves of the
brigalow (Acacia harpophylla). were made. into miniature boomerangs, and
flipped with a rotary motion into .the current of hot:air, where,
spinning with increased: velocity, they climbed up and up .in a beautiful
spiral until they lost the influence of the draught and fluttered de-
jectedly down to mother earth again.
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CHAPTER II

BOOMERANGS FROM A PHYSICAL VIEWPOINT

8§13 The behaviour of returning boomerangs.

Boomerangs are objects which, after being properly launched, fly rapidly
spinning through the air and return to the vicinity of the launching
point. (Boomerangs of the non-returning and straightsflying kinds are
not considered in this section.) This curious behaviour, so unexpected
‘for anyone watching it for the first time, should be completely explain-
able in terms of the laws of physics. An elementary explanation of the

returning boomerang is given in §16. The present section is descriptive.

A typical returning boomerang is thrown with its plane vertical (or
slightly inclined with its upper part away from the thrower), in a
horizontal (or slightly upward) direction, and with a considerable spin.
At first the boomerang just seems to fly away; but it soon swerves to
the left and alsoupwards, traverses a wide loop, approaches the
thrower, and may descend somewhere near the thrower's feet, or describe
a second, smaller, loop before reaching the ground. Generally, the
boomerang's plane of rotation gradually '"lies down", so that it may be
neariy horizontal at the end of the flight. It is a splendid sight if

a boomerang, quite near again after describing a loop, loses its forward
speed, hovers some 5 metres above your head, and slowly descends like

a helicopter or a maple seed.

Descriptions, however, can give only a rather poor idea of what a real
boomerang flight is like. One should stand in the open air to see how

very three-dimensional this phenomenon is and hear the soft, pulsating,
swishing sound of the boomerang arms moving rapidly through the air.

[Hess, 1968a, p. 126]

A naive observer might gain the impression that the boomerang is in the
air for half a minute or so, whereas the real duration of the flight is
typically about 8 seconds. Longer times are possible: the record dura-
tion of a boomerang flight witnessed by me was 22.0 seconds. In this

case the boomerang was made and thrown by Mr. Allan Grantham in Reading
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(U.K.), 29 June 1973. The timing was done independently by two observers
using stopwatches (without the thrower's being aware of it). There was

a light breeze and the boomerang returned fairly well.
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A returning boomerang typically reaches a maximum distance of some

30 m from the point of launching, and a maximum height of say, 15 m.
Lightweight boomerangs for indoor use may have flight paths with a dia-
meter as small as 3m. On the other hand, specially designed boomerangs
may reach much larger distances and still return completely. Distances.
"of over 100 m are mentioned in the literature, but usually these cases
are not well documented, and rest on optimistic estimates rather than
accurate measurements. The one exception, as far as I know, 1s that of
Mr. Herb Smith of Arundel, Sussex. In 1972 he did some long-distance
throwing experiments in which witnesses measured the maximum distance
reached by the boomerang, and checked if the boomerang fully returned
to the thrower or behind him. The record throw by Mr. Smith was done
on June 17th, 1972: 99 metres! The prevailing wind speed was about 8-9
m/s. Figure 13.1 shows a sketch of the record flight path, indicating

the positions of the witnesses.
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S14 Throwing.

Returning boomerangs may have various shapes, but they always consist
of two or more arms lying approximately in one plane. An essential
feature is the cross section of the arms, which is more convex on one

side than on the other. More details can be found in §15.

THE GRIP

fig._l&.l. The grip for a right-handed thrower. (Copied from [Ruhe,
1972]).‘The boomerang may also be gripped at its other end, so that the

free end ppint backwards.

A boomérang is thrown by grippihg it at one of its extremities, holding
it up with the more convex side towards the thrower's cheek, and
hurling it forward in such a way that the boomerang is released with a
rapid spin. This is not very difficult to achieve: as regards launching
a boomerang resembles not so much a ball as a sling. Its centre of mass
is situated at some distance from the part gripped by the thrower. The

boomerang swings forward and acquires a forward speed and a rotational
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fig. 14.2. Left-handed throw and first part of flight. (16 mmfilm frag-
ment, taken at 64 fr/s.) Numbers denote the time from the instant of

release in units of 1/64 sec..
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speed at the same time. At the instant it leaves the hand its centre
of mass moves much faster than the thrower's hand itself. In fact it
is not at all difficult to launch a boomerang at a speed of 90 km/h.
To impart as much spin as possible to the boomerang, take care noﬁvto
move the hand too fast, try to even stop the hand just before the
instant of release. This makes the boomerang pivot about the thrower's

wrist, rather than about a lower point such as the thrower's elbow.

Figure 14.2 shows the launching of a boomerang and the fifst part of
the flight. The pictures have been enlarged from a 16mm film exposed
at 64 frames per second. Numbers denote timé from instant of release in
units of 1/64 sec. The left-handed thrower accelerates the bobmerangvto
full speed in 1/10 sec. The boomerang completes one revolution in 6
frames, which indicates an initial spin of 10-11 revs/s. The boomerang's

initial forward speed is 25-27 m/s (90-100 km/h).

The angle ¥ between the boomerang's plane of rotation at launch and the

horizon (see fig. 14.3) has a profound influence on the flight path.
- P
9
a

b (]

fig. 14.3. View from behind the throwers. 9 is the angle between boom-
erang's plane of rotation and horizon. 9 s 70° in all three cases. Small
arrows near the more convex side of boomerangs indicate the direction
in which the flight path will curve. '

a) left-handed thrower launching left-handed boomerang.

b) right-handed thrower launching left-handed boomerang.

c) right-handed thrower launching right-handed boomerang.
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Most boomerangs should be launched at angles 9 between 45° and 90°. If
an ordinary boomerang is thrown at 8==0°-30°, usually it soars up high
in the air, and comes down either fluttering or at a terrific speed.

Some boomerangs may behave differently: one of my own, when thrown this

way, could traverse a circular loop in a vertical plane: loop the loop.

Usually a boomerang is suited to be thrown either with the right hand
or with the left hand. Most boomerangs are right-handed: their sense of
rotation in flight is counterclockwise as viewed from.the'more;éonvex
side. If such a boomerang is made to rotate in the opposite direction,
it generally does not behave 1ike a good boomerang. The mirror-image

of a right-handed boomerang, however, should rotate clockwise in oraer
to work well. Such a left-handed boomerang is suited to left-handed
throwers. In every reépect a left-handed fhrow with a left;handed boom- -
erang is the exact mirror-image of a right-handed throw. The fiight
path curves to thé right instead of to the left, etc. Cannot a left-
handed boomerang be thrown with the right hand and cqnve:selY? This is
indeed possible,'see'fig. 14.3b. if'the boomerang is to bevlaunéﬂed at
an angle 9 of about 70° or less, the thrower is forced to assume a
rather uncomfortable posture, however. For throws at 3=90° (pléne ver-

tical) the thrower's handedness obviously does not matter.

Good and detailed inétructiohshfbr‘§H£OWihg boomeréng§ canvbgvf6uhd in
the recent booklets: [Ruhe, 1972],u[Han$on,‘1974] (wiih'special atten-
tion to the symmetry between left- and right-handers), [Masdn, 1974]
(primarily about indoor boomerangs), and, for those who read German,
[Urban, 1966] (excellent textbook on the sport of boomerang throwing).

Optimum conditions for boomeraﬁg throwing are provided by a piece of

grass land the size of a football field, without trees or nearby build
ings. The weather should be almost windless, although some boomerangs
perform best when the wind speed is about 3 m/s. If there is wind, the
boomerang should be thrown to the right of windward (for right-handed
bqomerangs), so that the flight path is traversed almost completely
upwind from the thrower. The throw of fig. 13.]1 is an example. Always

be very careful when people are watching within 50 m distance: boomer-

angs are capable of inflicting serious wounds.
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§15 Making boomerangs.

fig. 15.1. a) right-handed and b) left-handed boomerang, each cut at
two places to show cross sections. Arrows indicate sense of rotation in

flight. Dots indicate centres of mass.

The most important feature of a returning boomerang is the cross section
of its arms, see fig. 15.1. This should be more convex on one side than
on the other. The detailed shape of a boomerang's planform is less im-
portant. The éngle included between the arms may vary between 70° and
130°, for boomerangs of the type sketched in fig. 15.1 and 15.2. Quite
different planforms are also possible. Returning boomerangs may for in-

stance resemble the capital letters: C, H, L, S, T, U, Vv, X, Y, Z.

k3

I ez

- YScm T

B

fig. 15.2. Right-handed boomerang, thickness distribution and cross
section. A = leading edge, B = trailing edge of arm. —— = lines of

constant thickness, —~—= thickest part of cross sections.
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Making a good returning boomerang is not difficult. A suitable material
is plywood of 0.5-0.8 cm thickness. Fig. 15.2 provides a fairly simple
example. The dimensions, which are not critical, mightlbe chosen as
follows: plywood thickness: 0.7 em, tip-to-tip length: 50 cm, angle
enclosed between arms: 110°, width of arms 4.5 cm, sbmewhat more at the
elbow. The amount of plywood required for one boomerang is 50 cm x 20 cm.
The boomerang's weight will be about 130 g. Saw out the planform with

a jig—saw. Bring upper side into desired shape with a rasp or a file.
The successive plies will be clearly visible, ‘and show whether the ob-
tained shape 1s smooth and regular. Leave the underside flat. Round the
leading edges and the tips, and sand the whole surface smooth. If the
boomerang performs well in a couple of trial throws, paint the boomer-
ang with glossy lacquer. Bright colours are convenient when the boom-
erang occasionally does not return after flying into a tree. For a
left-handed boomerang interchangé A and B in fig. 15.2., A double-handed
(i.e. both left- and right-handed) boomerang may be obtained by care-
fully giving its cross sections a symmetric shape (see fig. 15.3d). The di-

mensions given here may be changed by as much as a factor of 2upwards or down-

wards.

The cross sections shown so far have a blunt leading edge, a sharp
trailing edge and a smooth surface. This may not be necessary. Some
boomerangs perform well with rough surfaces or pieces broken off, and

some may have profiles as badly shaped as the one shown in fig. 15.3g.

a/-’j el
< D L < >
c D a )
| N —

fig. 15.3. Some profiles which might be used for boomerangs. Leading
edges at right. ‘

The practice of making and throwing boomerangs suggest the following

rules of thumb. If a boomerang "lies down" too much, soars up, and does
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not return, but describes only an open loop, it may help to increase
the "1ift" on arm 2 by filing away a bit of the underside near the
leading edge, as shown in fig. 15.3c. On the other hand, if the boom-
erang "lies down" too little, so that after describing half a loop it
loses height too fast, file away a bit of arm | in a similar manner.

A boomerang's hovering qualities may be improved by filing away a bit
of the undersides of both arms near the trailing edges, as shown in
fig. 15.3b, especially at the tips. If one desires to increase the
dimensions of a boomerang's flight path, ballast may be attached near
both wing tips, preferably inside the boomerang, or on the flat under-

side.
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fig. 15.4. Cross boomerang.

A boomerang suitable for indoor use is shown in fig. 15.4. It should be
very light: 15-20 g. Use balsa wood of about 0.5 cﬁ thickness. Cut

out two laths of 4 cmx 30 cm. Bring the upper sides of the arms into
shape with file or knife, and glue one lath upon the other, the upper-
side of which has been left flat near the centre. This boomerang may

fly better with some ballast attached at the centre.

Good instructions for making boomerangs can be found in: [Ruhe, 19721,
[Hanson, 1974], and [Mason, 1974] (cross boomerang type). As tomaterials
other than wood (polypropylene, magnesium), one might consult Mr. G.
Rayner [1972]. |
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§16 The principles of the returning boomerang.

This sectioﬁ presents a rough elementary explanation of the remarkable
behaviour of returning boomerangs. First of all, note that if a boom-
erang would be thrown in a complete vacuum (on the moon for instance),
it would traverse a parabola, just like any other object. The gravita-
tional force (= its weight) wopld pull it downwards, and no other
forces would act on it during its flight. It would behave just like an
ordinary stick. (If gravity would be absent too, the boomerang, like
any other object, would fly in a straight line at a constant speed.) If
a thing does not fly like a stick or a stone, it is because of forces
exerted upon it by the air. Obvious examples of such things are: air-
planes, birds, insects, maple seeds, pieces of'péper, snow flakes,
autumn leaves, boomerangs, etc. A boomerang would be no boomerang, with-

out air to move through.

It is the aerodynamic forces which curve the boomerang's path. However,
not every piece of wood is capable of generating these forces the way

a boomerang does: it must be properly shaped. Moréover, even a good |
boomerang, dropped from a window cannot be expected to automatically
return, it must be properly launched. Hence two factors play key roles:
the boomerang's shape, and the boomerang's motion. More specifically,
any explanation of the return behaviour of boomerangs must be based on
these two principles:

1. the boomefang's arms are wings,

2. the boomerang spins rapidly and behaves as a top.

Let us first consider principle 1: the boomerang's arms are wings.

As we remarked earlier, an essential feature of a boomerang is the

shape of the cross section of its arms. Usually this cross section is
more convex on one side than on the other, see fig. 15.1. In this re-
spect boomerang arms resemble the wings of airplanes and birds. If an
airplane flies horizontally through the air, its weight must be counter-
balanced by an upward force, or it would fall down. As airplanes are
heavy, this upward force must have a considerable magnitude. Where does

it come from? Obviously, it comes from the air and acts on the air-

plane's wings.
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Fig. 16.1. Airplane, flying horizontally at speed V. Weight is counter-

balanced by upward aerodynamic force called 1lift.

If an arbitrary object moves through the air, the air flows around it,
giving way to the object. The air, which is originally at rest, is
forced into motion, and after the object has passed, it will still move.
To bring about the air's motion, the object must exert forces on the
air, and the air in turn reacts and exerts opposite forces onthe object.
In daily life the resulting aeordynamic forces usually are directed
opposite to the object's motion: the object, which may be a ball or a
bicyclist, is slowed down by the air. However, boomerang arms, like
airplane wings, have a special shape, which causes the aerodynamic
forces to act in a direction nearly perpendicular to the wing's motion.

In the case of an airplane the resulting force is directed upwards.

F

a b

fig. 16.2. a: inclined flat plate moving at velocity V through air.
b: plate stands still, but air moves at opposite velocity V. Both cases

are equivalent. F = resulting upward force on plate.

In order to understand the cause of this force, consider a flat, thin

plate, which moves horizontally forward at a velocity V. The plate is
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slightly inclined upward with its leading edge. The air will exert a
force F on the plate, more or less as indicated in fig. 16.2a. This
appears quite plausible: the air is pushed downwards by the plate, and,
trying to résist this sudden motion, hits the underside of the plate,
which experiences anupward forceF. Perhaps it is easier to understand
the equivalent situation in which the plate stands still and the air

moves in the opposite direction at velocity V, see fig. 16.2b.

However, this explanation is not satisfactory for wings without éppa-
rent inclination, which may also experience upward forces. Such wings
always are more convex on the upper side than on the underside. A homely
example is provided by the umbrella. If the reader has on accasion pro-
tected himself in gusty weather against the rain by means of an umbrel-
la, he may have noticed the upward pull on the umbrella at each wind

gust (fig. 16.3). Similarly, but on a larger scale, a gale may pull the

. Foru. .
\
/< ) N wind

v

fig. 16.3. Upward force on umbrella held upright in wind.

roof from a house. In these cases the lift originates from the curved

path the air is forced to move along, see fig. 16.4. Let us first look

—
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fig. 16.4. Air flow around an umbrella (cross section).

100



at the convex upper side. The air moves upwards near the rim of the
umbrella, which thereforé experiences a (small) downward force. But as
soon as the air flows over the surface of the umbrella, it must follow
its curved shape. The air particles, tending to follow stra1ght paths,
are inclined to move: away from the umbrella's surface. Indeed, this
tendency results in a lowered air pressure over the umbrella (centri-
fugal effect). Farther away, higher above the umbrella, the air pres-
sure is about normal It is exactly this pressure d1fference which
prevents the air particles from flying straight away, and makes them
follow their curved paths along the umbrella's surface. Now look at the
concave underside. Here, too, the air particles must follow curved
paths. In tending to fly straight, they push against the umbrella. They
must be continually deflected downwards from the direction of their
momentary velocity. This increases the air pressure under the umbrella.
We see that there is a difference in air pressure on both sides of the
umbrella: higher pressure underneath, lower pressure on top. These
respectively push and pull the umbrella upwards. If your hand holds the

umbrella in a fixed position, you feel an upward pull.

4

=

fig. 16.5. Air flow around wing (cross section). F = resulting force.

H1\\

a: no apparent inclination. b: with additional inclination, F is larger.

For airplane wings and boomerang arms, the story is essentially the
same. The air pressure on the more convex side is lower than on the
other side, and a net force F results, see fig. 16 5a. If the wing is
inclined more and more, as indicated in fig. 16.5b, the resulting force
becomes larger (up to a certain limit). If the velocity of the air is
increased, the force F increases too. Or, for moving wings in still
air: the greater the wing speed V, the greater the force F. Actually,

if V is doubled, F increases fourfold (within a limited, but wide range
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of velocities V). Now we know what keeps an airplane up in the air.

As stated in §14, a right-handed returning boomerang is usually thrown
in such a way that its plane of rotation is nearly vertical, the more
convex side facing towards the left. As the aerodynamic forces exerted
upon the boomerang arms are directed from the less convex side to the
more convex side, the resulting forcé, instead of pointing upwards as
with an airplane, points towards the left, as seen by the thrower (fig.
16.6). This force accelerates the boomerang leftwards. One might there-
fore expéct the boomerang to swerve to the left, as indeed it does.

However, this is only one part of the explanation.

fig. 16.6. Resulting leftward force F on right-handed boomerang.

In the following, we shall refer to a cross boomerang, just for conve-
nience. For differently shaped boomerangs the explanation is the same.
The length of the bobmerang's arms (from boomerang's centre of mass to
tips) is a. The boomerané hasva forward speed V, and a rotational speed
w. At each instant, not all parts of the boomerang have the same velocity.

This is due to the combination of the forward speed and the rotatiomal

wa+V

T ——
wa-vy Vv

fig. 16.7. Upward pointing end of boomerang has velocity wa +V in for-
ward direction, downward pointing end has velocity wa -V in backward

direction.
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speed. The upward pointing end of the boomerang moves faster that the
downward pointing end. In the first case (top end) the forward speed V
adds to the speed due to rotation wa; the resulting speed is wa +V. In
the second case (bottom end), these speeds are in opposite.directions
and must be subtracted; the resulting speed is ma-—V'in backward difec—.
tion (see_fig. 16.7). Compare this with a rolling wheel, moving at a
forward speed V: the upper most point has an instantaneous speed 2V, the

point touching the ground stands still (here wa =V). Hence the uppermost

{

]

fig. 16.8. a: distribution of leftward forces: stronger at the top,
weaker at the bottom. b: this is equivalent with a resulting leftward
force F acting on the boomerang's centre, and additional leftward
forces at the top and rightward forces at the bottom. c¢: these form a

torque T, which tries to cant the boomerang with its top towards the
left. o

Parts of the boomerang experience much stronger leftward forces than
the lower parts do. This means that the aerodynamic forces not only
produce a net leftward force F, but also a net torque T, which tries to
cant the boomerang with its upper part to the left: counterclockwise as
seen from the thrower. See fig. 16.8. This canting would be about an
imaginary horizontal axis, called the torque axis. However, we do not

observe such canting in boomerangs!

At this point we must consider principle 2: the boomerang spins rapidly
and behaves as a top.

Put a top upon its peg, and it will, of Eourse, topple over. But give
it a fast spin, and it can stand upright. The difference is due to the
rapid rotation. A spinning top reacts in a peculiar way to an applied
torque: it does not give way to the torque, but rotates slowly about

an imaginary axis perpendicular to both the spin axis and the torque
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fig. 16.9 a) Precession 9 about axis perpendicular to both torque axis

and spin axis. b) Precession of boomerang.

axis. See fig. 16.9. This motion is called precession. A boomerang
behaves just the same way. Here the spin axis is horizontal, to the
left, the axis of the aerodynamic torque T is horizontal, directed
backwards towards the thrower, and the axis of precession is vertically
upwards: the boomerang moves with its foremost part to the left and
rotates slowly with an angular precession velocity Q counterclockwise
as viewed from above. Thus the boomerang turns its foremost part,
rather than its uppermost part, to the left. In daily life, this phenom-
enon of precession is exploited, when one bicycles 'with no hands"
through a curve: leaning to the left makes the spinning front wheel

turn to the left.

A rough explanation of this precession is as follows. Here we shall
disregard the net force F, as its only effect is to accelerate the

boomerang as a whole to the left. The net torque T then originates from

. . LF:Ftwrd.
$ lRwa )
\ velocity
\ \ ‘ cightward
speed, velocity
' Tight ward
a b ¢ fore d e foce

fig. 16.10. Precession of boomerang. a,b,c,d: one wing tip in the
course of a revolution. e: front part has leftward velocity, rear part
rightward velocity. : :
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leftward forces on the upper part of the boomerang and rightward forces
of equal magnitude on the lower part of the boomerang (see fig. 16.8b).
The maximum leftward force is exerted on the upper part of the boomer-
ang (fig. 16.10a), this part is accelerated to the left and gradually
acquires a leftward speed, which reaches its maximum when this part has
become the foremost part (fig. 16.10b). When this part descends further
the torque begins to push it to the right, which decreases its leftward
speed. The maximum righﬁward force occurs when the considered part is
at its lowest (fig. 16.10c), here the leftward speed has vanished, and
a rightwérd velocity begins to grow, reaching a maximum as the part is
half way the top (fig. 16.10d), and vanising when it is uppermost again
after having completed one revolution (fig. 16.10a). The result of this
sequence is indicated in fig. 16.10e. The combination of leftward velo-
city in front and rightward velocity behind constitutes the motion of
precession: the boomerang slowly rotates its plane about an imaginary

vertical axis. The larger the torque T, the faster the precession.

From our explanation so far the following picture emerges. The boomer-
ang originally moves horizontally forwards, its plane of rotation ver-
tical. Soon it swerves to the left because of the net force F. At the
same time it responds to the net torque T by slowly moving its foremost
part to the left. The combined effects may result in the boomerang's
‘traversing a curved path, and its returning to the point of launching.
‘We shall presently show how. Effects due to gravity (weight) are dis-
regarded. We call Y the angle between the boomerang's plane of rotation
and the direction of its forward speed. If ¥=0, the boomerang moves
parallel to its own plane. If y>0, the boomerang is inclined with
respect to its forward motion, and the aerodynamic forces will be
larger. This is because each part of the boomerang arms will be in-

clined too, and experience a larger "1lift", see fig. 16.5.

Let us consider the three hypothetical cases indicated schematically in
fig. 16.11.

Case a: only the net force F acts, the net torque T is negligible. The
boomerang acquires a leftward velocity in addition to its original for-
ward speed. Its plane of rotation remains parallel to itself. This re-

sults in the angle of incidence becoming negative: ¥ <0. As ¥ becomes
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a b : _ c

fig. 16.11. a) only force F acts. b) only torque T acts. c) both F and
T act. V is forward velocity,‘Y is angle of incidence. 1,2,3: successive
positions, bird's-eye view.

more negative, the force F decreases until it vanishes. The boomerang
finally flies in a straight line at a constant, negative Y.

Case b: only the net torque T acts, the net force F is negligible. The
boomerang flies forwards in a straight line, at a constant speed. Mean-
time the precession rotates the boomerang counterclockwise as seen from
above. This increases the angle of incidence ¥ further and further. If
the torque T does not vanish before ¥ has reached 90°, the boomerang
~will finally move with its plane perpendicular to its flight path.

Case c: both F and T act. With a good boomerang both effects are neatly
balanced. If the torque T caﬁses ¥ to increase, F will increase also,

. pushing the boomerang to the left and keeping ¥ from increasing too
much. The :eshlt is a curved flight path, traversed at a rather small

angle of incidence Y.

The above explanation makes it understandable how a boomerang can tra-

verse a more or less circular loop, and return to the thrower. During
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the flight a boomerang is pulled down by its weight, and it should of
course complete its loop before dropping to the ground. If the boom-
erang moves with its plane not vertical, i.e. if 9 <90°, the force F

'may have an upward component, which counteracts the weight, and keeps

the boomerang in the air longer.

The main factors in the explanation given in this section are summarized

in the following scheme:

boomerang moves forward (V)

and rotates (w)

leftward

precession

velocity

angle of

incidence ¥

curved
flight path
with small ¥

The following aerodynamic observation might assist the reader's under-
standing of boomerangs; it concerns the relation between a'wing's "in-
clination" and the aerodynamic lift. A wing of any cross section can be
moved forward at such an "inclination" or "angle of attack” that the
resulting lift is exactly zero (see fig. 16.12a), and only a small back-
ward resistance (drag) is present. For a flat cross section this direc—
tion is obviously parallel to the wing's plane. For wings with a more
convex upper side this direction corresponds to an apparent negative
inclination. At any other angle of attack the wing will devélop lift

(see fig. 16.12b). The angle (o) between the inclination of zero lift
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fig. 16.12. Effective angle of attack o for wing sections.
a) Inclination with vanishing.lift (only small resistance), a = 0.

b) With lift. Inclination with respect to direction of zero lift is a.

and the actual inclination is called the section's effective angle of
attack. If this angle a is not too large (say |a| :,10°), the lift is
approximately proportional to. a. Thus we see that boomerang arms. having
symmetrical biconvex or plane cross sections may experience lift, pro-
vided the boomerang's angle.of incidence ¥ is not zero. Hence, completely:
flat boomerangs, cut from cardbbard, may be capable of performing
return flights, although their performance generally is rather poor; If
such a plane boomerang (or one with symmetrical biconvex sections) is
twisted, so that the leading edges of its arms are raised as indicated in
fig. 4.1, it will develop lift even at ¥ = 0 (except for the central
part which is not inclined). In these cases, the effective angle of

attack a of the boomerang arms is not zero, but positive.
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817 More boomerang mechanics.

This section deals with five subjects. A: The size of a boomerang's
flight path. B: Lying down. C: Stralght—flylng boomerangs. D: Straight

boomerangs. E: Surface roughness.

A: The size of a boomerang's flight path.

Suppose a boomerang flies approximately along a horizontal circle, with
its.plane of rotation vertical (8§ =90°), and with a small, constant
angle of incidence Y. The boomerang's forward velocity be V (m/s), its
spin w (rad/s), (1 revolution = 27 radians). For a rapldly spinning ob-
ject, the precessional veloc1ty Q (rad/s) is related to the torque T

and the spin w according to the formula:

sz‘=-1-; (17.1)

Here I is the object's moment of inertia with respect to the spin axis.

vVt

fig. 17.1. Boomerang's position at two instants, t seconds apart.

(Bird's-eye view).

Let R be the radius of the circular flight path (see fig. 17.1).

seconds the boomerang;traverses an arc with a length of Vtmetres. The
angle, as seen from the path's centre, covered by this arc be a, so that
the arc's length equals aR. Hence: aR=Vt. In the same time interval the

boomerang precesses over an angle Qt. If the boomerang's angle of
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incidence ¥ (angle between boomerang's plane and flight path) is to be

constant, we have the condition Qt =a. Hence QtR =Vt and
QR =V (17.2)

To make the boomerang fly along a curved path with radius R, a centri-
petal (directed towards circle's centre) force is required of magnitude
'mVZ/R, where m is the boomerang's mass. This force, of course. is sup-
plied by the aerodynamic force F of §16. Therefore:

sz

F =T | (17.3)

For the flight path radius R we obtain:

2
. mV
R F (17.4)

Also, from (17.1) and (17.2) follows:

v IwV :
R =-§= T (17.5)

T F
o mv (17.6)

Both T and F depend on the angle of incidence Y. Therefore Y must have
such a value that (17.6) is satisfied. We emphasize, however, that the

way of flying described here needs not always be possible (see Part III,

§6). | '

- What happens if one launches the same boomerang at a higher speed, so
that both V and w are increased? Does the flight path become larger?

Let us see. According to (17.4) R seems to increase if V does. On the
other hand, F also increases with V. If we assume that the ratio w/V is-
the same at each launching (which seems not unreasonable), and, moreover,
that also Y remains the same, then F turns out to be proportional to V2
(or to mz or to wV) according to aerodynamic theory. Hence R remains
unchanged, according to (17.4). (Alternatively, one might use (17.5)

and note that T is proportional to wV.) This means that the flight path
radius is independent of how fast one launches the boomerang! In a

sense: each boomerang has its own flight path radius. This is indeed
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confirmed by experiments.

If a boomerang is made more massive (by making it from heavier material,
or by attaching ballast), so that both m and I are increased, but its
shape remains the same as before, (17.4) and (17.5) show that the flight
path radius increases. The above rough qualitative results were

derived as the outcome of a simple boomerang theory in [Hess, 1968a].

A more accurate treatment of this matter is presented in Part III, Ch. I.

B: Lying down. A

Generally, the foremost part of a boomerang experiences more "1ift",
i,e. a.iarger leftward force, than the rear part does. This is caused
mainly by "wake effects". The air, as it passes the boomerang, gradually
acquires an induced rightward velocity, because it is pushed to the
right by the boomerang's arms. The rear parﬁ of the boomerang does not
meet "virgin" air, but air moving slightly to the right, so that this
part experiences less "1lift". This causes the net torque T to have a
component which tries to cant the boomerang with its front part to the -
left. Precessipn then tilts thé'boomerang with its uppermost part to
the right. The resﬁlt is visible as "lying down". (In other words, the
axis of the torque T is not exactly horizontal, as indicated in fig.
16.9a, but tilted a bit upwards. The precession then proceeds about an

axis not exactly vertical, but tilted a bit forwards.)

Another possible cause of lying down is discussed in [Hess, 1968a].
Consider a boomerang of the common type (see fig. 17.2). Both arm | and

arm 2 experience a maximum leftward "1ift" when they point upwards. In

a

|
v a, , L!,
fig. 17.2., a) Maximum "1ift" on arm 1 in front of CM. b) Maximum lift

on arm 2 behind CM. CM = boomerang's centre of mass.
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the case of arm 1 the position of the largest force is in front of the
boomerang's centre of mass, in the case of arm 2 it is situated behind
this centre. If the "1lift" on arm 1 is increased by giving this arm a
suitable cross section, or more "inclination", and/or the "1lift" on arm
2 is similarly decreased, there results a torque component trying to
cant the boomerang with its foremost part to the left, which results in

lying down by precession.

In some boomerangs the phenomenon of lying down may be so strong, that
somewhere halfway its flight, the boomerang's plane becomes almost
horizontal, and, still lowering its advancing part (once its upper
part), the boomerang begins to curve to the right. Such a boomerang may
describe a path with an 8-shaped planform. The first loop is traversed

counterclockwise, the second loop clockwise (see for instance fig. 18.1).

C: Straight-flying boomerangs.

After having réad_the present chapter up to ;his point, the reader may
wonder whether straight-flying boomerangs are possible at all. They are.
Suppose we launch a boomerang in a horizontal direction with its plane
approximately horizontal (9§ =~ 0), and that the net force F, which is a
real lift in this case, just balances the boomerang's weight. Supposé
further that the net torque T would vanish (T = 0), then the precession
would be absent, and the boomerang would keep its plane horizontal: it
would fly straight on. How can we ﬁrovide a boomerang with a positive
net force F and a zero net torque T? Give the boomerang's wings a nega-
tive inclination at the tips, and a positive inclination near the boom-
erang's centre. One might call the result a negative twist. The 1lift
distribution then would have a negative part near the tips, and a posi-
tive part in the middle, as indicated in fig. 17.2b. A similar explana-

tion of straight-flying boomerangs was given by Musgrove [1974], who

remarks:

It is important to recognise that the 1ift and moment distributions
required by straight-flying boomerangs [...] are appreciable more com-
plex than those requlred for a return boomerang. Because of this return
boomerangs are easier to construct than straight-flying ones.
[Musgrove, 1974, p. 189]

Computed fllght paths of a theoretical straight-flying boomerang are
shown in Part III, §35. ' '
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fig. 17.2. a: lift distribution for a returning boomerang, b: lift dis-

tribution for a straight-flying boomerang. Views from the (right-handed)

thrower's position.

D: Straight boomerangs.

The list in §15 of capital letters which boomerangs may resemble does
not contain the I. A completely straight boomerang would not work easily
(see 89 under Celebes). Yet everything in §16 seems to be valid for

such I-shaped boomerangs too. Indeed it is, provided the boomerang spins

the correct way. This is a matter of stability.

According to the theory of rigid bodies: in the absence of external
forces and torques, an object can have a stable rotation about either
of two axes through its centre of mass, the one with the greatest and
the one with the smallest principal moment of inertia (p.m.i.).

1ot pmi. I omi.

’ S/
’
, ’

’
//’-':\\ axiswith Y o - 7> axis with

y G “ STellasL- pm.i. - - ¥ smallest pm.i.

[-}]

b

fig. 17.3. Axes ahout Which stable rotation is possible. a: ordinary

boomerang, b: straight boomerang.
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An ordinary boomerang, which is an approximately plane object, can spin
stably about an axis through its centre of mass perpendicular to its
plane (greatest p.m.i,), see fig. 17.3a. A straight knitting needle can
spin stably about its (longitudinal) geometrical axis (smallest p.m.i.).
1f the middle p.m.i., which belongs to a third.principal axis (dashed
in fig. 17.3), equals the greatest (resp. the smallest) p.m.i., the
rotation ( in the absence of torques) about the axis with greatest
(resp. smallest) p.m.i. is not stable. The middle p.m.i. of a straight

boomerang is only slightly smaller than the greatest p.m.i. (see
Part III, §2). |

A straight boomerang might be able to spin correctly, i.e. rotate in
its own plane about the axis with the greatest p.m.i., see fig. 17.3b.
But there are external forces and torques acting on the object, and
there is not much to prevent the "boomerang" from starting to rotate
about its longitudinal axis (smallest p.m.i.). This undesired rotation
probably would be stable, and the boomerang's cross sections would ex-
pose themselves in quite unsuitable orientations to the oncoming air-
flow. The "boomerang's" behaviour would then resemble that of a narrow
strip .of paper. This longitudinal spin is exploited with a toy

called "tumblestick" by Mason [1937], [1974, Ch. V].

E: Surface roughness.

The cross sections of air plane wings generally have a streamlined
shape, ‘a round nose and a smooth surface. This helps the air to flow
nicely along the wing's curved upper -surface and reduces the air resis-
tance. However, there are indications that this smoothness might not be
optimal for objects having about the size éhd the speed of boomerang
arms. Golf balls, for instance, are dimpled. Model airplane builders
mount wires in front of the wing's leading edges, or may even use wings
with sharp leading edges. All this may help to make the air flow near
the wing turbulent. Curiously, this may reduce the air resistance. More
information on this point is given in Part II, $26. The rough surfaces
and the rather sharp leading edges of some aboriginal boomerangs might

be functional. Only experiments can elucidate this point.
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§18 Earlier research on boomerangs.

The first publication on boomerangs written from a physical viewpoint
is [Moore & McCullagh, 1837]:

In the present case, therefore, it is clear that the continued swerving
from the vertical plane must be ascribed to the action of the air. But
to compute accurately the mutual action of the air, and of a body en-
dued, at the same time, with a progressive and a rotatory motion, is a
problem far beyond the present powers of science. The problem can only

be solved approximately; and however we may simplify it, the calcula-

tions are likely to be very troublesome. [Moore & McCullagh, 1837, p.
74/5] : ‘

About this time boomerangs had become extremely popular in Dublin:

0f all the advantages we have derived from our Australian settlements,
none seems to have given more universal satisfaction than the intro-
duction of some crooked pieces of wood shaped like a horse's shoe, or
the crescent moon; and called boomerang, waumerang, or kilee. Ever since
their structure had been fully understood, carpenters appear to: have
ceased from all other work; the windows of toy shops exhibit little
else; walking sticks and umbrellas have gone out of fashion; and even
in this rainy season no man carries any thing but a boomerang; nor does
this species of madness appear to be abating. [Dubl. Univ. 1838, p. 168]
‘The quotation is taken from an article in the Dublin University Maga-
zine of February 1838, called "The boomerang, and its vagaries." The
anonymous author was the first to give a basically correct explanation
of the returning boomerang. In his exposition he made use of a cross-
;shaped boomerang (the first mention at all of a cross-boomerang, by the
way). The crucial role of precession is clearly stated. The lying down
of boomerangs follows naturally from his exposition. The only imperfec-
tion concerns the explanation of lift on wings, but a better under-
standing of aerodynamics was perhaps impossible at that early time.
Unfortunately this article seems hardly to have been noticed by others
interested in boomerangs. It was almost fifty years later that asimilar
explanation was given by Gerlach [1886] in his excellent paper: "Ableitung

gewisser bewegungsformen geworfener Scheiben aus dem Luftwiderstandsgesetze."

In the meantime various attempts were made to clarify the mechanics of
boomerangs. Erdmann [1869] gave a correct qualitative explanation. In
his theory an important factor is the boomerang's inclined underside

(windschiefe Flache). The aerodynamic lift on wings is conceived of in
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terms of air particles hitting the wing's underside, not unlike sand-
grains. (Compare our exposition of the inclined plane in §16.) Such
considerations easily lead one into believing that without twist a
boomerang cannot return (see also $4). [Erdmann, 1869] contains good
sketches of boomerang flight paths, the first of such quality to be
published. Stille [1872] attempted to make quantitative calculations of
the boomerang's motion. Again, the basis is provided'by the "windschiefe
Flache". He tried to obtain the aerodynamic forces and torques on a
boomerang by integrating the force acting on each of the boomerang's

surface elements. He was not really succesful.

After [Gerlach, 1886], another article of interest is "Fact and fallacy
in the boomerang problem" by Emerson [1893]. He speaks in a rather
ironical vein of the mathematical approach: '

..... the somewhat astonishing literature of the boomerang bristles
with the pointed persistance of the one idea, that this dynamic mystery
is a case for mathematical formulae, if there ever was one. [Emerson,
1893, p. 78]

Emerson's paper, based on sound skepticism and common sense, does not
give a satisfactory explanation of the boomerang's behaviour. It reviews
the previous literature on boomerangs, and, for the first time, reports

the use of a small boomerang throwing machine.

In 1897 Walker's [1897a] classic "On boomerangs" was published. Walker
understood the mechanics of boomerangs very well. He distinguishes
"twisting" and "rounding" of the boomerang arms. Like Stille [1872],
he tries to integrate the forces on each surface element. He smoothes
his equations (compare the approach of [Hess, 1968al and Part III, §2)
and gives purported conditions for stability. Walker also explains the
straight-flying boomerang. However, his lengthy méthematical computa-
tions get entangled, and do not seem to make much sense. His drawings
of observed flight paths are excellent, and have been often copied by
others (see fig. 18.1). Walker's other papers [1900]), [1901la,b,c] con-

tain nearly the same subject matter, but without most of the mathema-

tics.
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Buchner [1905] also published good drawings of flight paths. His approach
is mainly experimental. Lanchester's [1908] appendix on boomerangs

gives a good explanation of the return flight. He describes three-armed
boomerangs. The phenomenon of autorotation (increase of boomerang's
spin) is mentioned, and the influence of the wind on the boomerang's
flight is discussed. Buchner's later publications [1916], [1918] con-

tain a description of a small boomerang throwing machine.

Elevation upon a vertical
plane through AC.

Plan, ' Elevation along CAG.

fig. 18.1. Two boomerang flight paths, copied from [Walker, 1897a,

p. 39]. Short, straight line segments indicate boomerang's spin axis.

From this time on nothing of significance was added to the scientific
knowledge of boomerangs until the late 1960's, with the exception of
[Cornish, 1956]. (Recent research is discussed in §l9.) When one looks
through the literature on the mechanics of boomerangs, one can hardly
escape noticing the lack of correlation between the date of publication
and the level of the author's understanding of boomerang mechanics. The
publications discussed above all are definitively above the average
level. But even as late as 1931 a serious physicist asserted that a

boomerang is only a spinning discus [Pohl, 1931]. And [Grimsenhl, 1923]

N\
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gives a fully wrong "explanation" of the return flight. These errors
are perpetuated in relatively recent physics textbooks: [Pohl, 1959]
and [Grimsehl, 1957] respeétively. Sometimes a boomerang theory, though
erroneous, may at least be amusing; [Landois, 1885], for instance, ex-
plains the returning boomerang by analogy with the screw back of a
billiard ball. The sparse French literature on boomerangs seems to have
followed a separate path. Certainly, the exchange of ideas between Eng-
lish and German authors has been much greater than between either of

these and French authors.

Here follows a chronological list of publications, the authors of which
contributed, or tried to contribute, to the understanding of boomerang
mechanics. With each entry the language of publication is méntioned;

E = English, F = French, G = German.

[Moore & McCullagh 1837) E, [Dubl. Univ., 1838] E, [Carroll & Lioyd,
1838] E, [D., 1838] E, [Poggendorff, 1838] G, [Wolff, 1852] G, [Snell,
1855] E, [Lovering, 1858] E, [Erdmann, 1869] G, [Tridon, 1871] F,
[Marey, 1871] F, [stille, 1872] G, [Eddy, 1881] E, [Landois, 1885] G,
[Fuchs, 1886] G, [Gerlach, 1886] G, [Eggers, 1888] E, [Emerson, 1893] E,
[Walker, 1897a] E, [Walker, 1900] G, [Walker, 190l1a,b,c] GEE, [Salet,
1903] ¥, [Routh, 1905] E, [Sharpe, 1905] E, [Buchner, 1905] G,
[Lanchester; 1908] E, [Sutton, 1912] E, [Buchner, 1916] G, [Gray, 1918]
E (based on Walker, 1897a), [Buchner, 1918] G, [Grimsehl, 1923] G,
[Kreichgauer, 1924] G, [Schuler, 1929] G, [Pohl, 1931] G, [Mottez, 1933]
F, [oxley, 1939] E, [Turck, 1952] F, [Cornish, 1956] E, [Chikazumi,
1967] Japanese, [Mpeye, 1968] E, [Hess, 1968a] E, [Mpé&e, 1969] F,
[Ruhe, 1970a, 1971a, 1972] E, [Magnus, 1971] G (based on Hess, 1968a),
[James, 1971] E, [Hess, 1972a] Dutch, [Rayner, 1972] E, [L., 1972] F
(based on Hess, 1968a), [Hess, 1972b] E, [Hess, 1972c] Dutch, [Barger

& Olsson, 1973] E, [Hess, 1973a) E, [Jeffrey, Grantham & Hersey, 1973]
E, [Musgrove, 1974] E, [Allen, 1975) E, [Hess, 1975] E (this work).
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§19 Recent research on boomerangs.

The first theoretically calculated flight paths were published in [Hess,
1968a]. On the basis of a simple mathematical model for the motlon of
boomerangs, equations of motion were derived which could be numerically
integrated on a computer. Two main assumptions of this ‘model are:

12 the air' s 1nduced motion is negllglble, 22 the boomerang's angle of
incidence Y is nearly zero. The resulting theoretical flight paths look
surprisingly realistic. They are compared with actual boomerang flight
paths, which were recorded as follows. A small light, fed by batteries,
was mounted in a boomerang, and the light's trace was photographed at

night. Examples are shown in fig. 19.1 and 19.2.

The attachment of light sources to boomerangs has been mentioned much
earlier by Mason [1937, p. 34/5]1 = [1974, p- 34/5). Cornish [1956, p. 242]
used a "thermite flare” to produce a trace bright enough to be photo-
graphed: the first publication of a pPhotographically recorded flight
path. (In addltlon, this art1c1e contains a correct and clear explana—
tion of the returnlng boomerang ) [Moulder, 1962, p.59] also presents a
flight path picture by Cornish. Hawes' [no date] commercial boomerang
leaflet shows a beautiful photograph of a flight path traversed by a
boomerang with a "fourth-of-July-sparkler" attached near its centre of
mass. Musgrove and his students use electric lights in their boomerang
experiments [Jeffery, Grantham & Hersey, 1973]. In Part III of the
present work a number of similarly recorded flight path stereograms are
presented. Curlously, also the Australlan Aborigines threw illuminated
boomerangs at night, as shown by‘the quotation at the end of §7 from
[McConnei,v1935, p. 49/50].

Let us resume our survey of recent boomerang research. Mpeye [1968],
[1969] independently did theoretical work, more or less similar in
apﬁroach'to that of [stille, 1872] and [Walker, 1897a]. Musgrove and
his students in Reading (U.K.) are doing theoretical and experimental
work on boomerangs. They developed a simple boomerang launcher for use
in the open air, to control the initial conditions of the boomerang's
flight [Jeffery, Grantham & Hersey, 1973], [Musgrove, 1974]. [Barger &

Olsson, 1973] contains an exposition of a simple boomerang theory.
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fig. 19.1 (photograph B6, Oct. 1967). Time exposure of the path traversed
by a light bulb mounted in a boomerang near one of its tips. Start at
lower left, initial direction of the flight to the right, then away
from the camera, to the left, towards the camera, and, finally, down-
wards. Thick part of light trace was made while the boomerang was held
by the thrower's hand. Background shows moonlit sky over Groningen
Stadspark. : : :

A ]

fig. 19.2 (photograph C4, Oct. 1967). Similar time exposure. Here the
boomerang hits the ground after flying some 10 metres, which severely
diminishes its forward speed. '
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Allen [1975] and his students did a project on boomerangs. In addition
to this research at universities, James [1971] and Rayner [1972] did
experimental work on boomerangs, and Ruhe [1970a,1971a,1972] created a

boomerang workshop in Washington D.C.

The theory of boomerang motion outllned in Part IT and Part. III of the
present work differs from ear11er research on boomerangs in one 31gn1-
ficant aspect. The induced motion of the air, caused by the forces
exerted upon it by the boomerang, is taken into account. ~Although the
theoretlcal model employed is strongly simplified with respect to
reality, it is considerably more complicated than the model of [Hess,
1968a]l. To a certain extent such complexity cannot be avoided: The »
boomerang's motion depends on the forces experienced by the boomerang.
These forces depend on the boomerang's motion and on the air's induced
motion. This induced motion in turn depends on the forces the boomerang
exerts on the air. Both the boomerang‘s and the air's motion are un-
knewn, and so are the forces exerted mutually by the boomerang and the
air. Exactly the same complexity pertains to helicopter rotors, whieh,
in some respects, closely resemble boomerangs. For a description of the
main features of eur'model, see Part 11, §l.

Novel are the experiments (reported in‘Part II, Ch. VI) in which the

aerodynamic forces and torques are actually measured.

Future research on boomerangs should include, I think, not only the
development of theoretical models and experiments better than those
reported in this work, but also systematic investigations into (A) the
relation betﬁeen a boomerang's cross section and its performance, and
(B) the detailed behaviour of the airflow around rotating boomerangs.
The investigations of type (A) would require the making of boomerangs
with very precisely determined shapes. Those of type (B) could not be
carried out without the use of a wind tunnel and advanced experimental

equipment.
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THE COMPLEAT‘FIRST ANNUAL
NOW YOU SEE IT—NOW YOU DON'T—NOW YOU SEE IT AGAIN (HAPPY RETURNS)

SMITHSONIAN

BOOMERANG

TOURNAMENT
FREE

SPECTATORS WELCOME

- COMPETITORS:
BRING YOUR OWN BOOMERANGS

SPONSORED BY THE SMITHSONIAN
RESIDENT ASSOCIATE PROGRAM
AND DESIGN NEWS MAGAZINE,BOSTON

WHEN: SATURDAY, MAY 18, 1974, 4 PM
(REGISTRATION 3 TO 4 PM)

WHERE: ON THE MALL (CONSTITUTION
AVENUE AT 20th STREET, N.W,,
WASHINGTON, D.C.)

WHO: EVERYONE EIGHT YEARS OLD
AND UP :

COMPETITION RULES: THIS COMPETTTION TESTS ACCURACY AND ABILITY TO CATCE A
XETURNING BOOMERANG. 1. COMPETITORS THROW FROM ANYWHERE INSIDE A 6-YARD
DIAMETER CIRCLE. ‘2, THE BOOMERANG NUST BE THROWN .15 YARDS OUT. 3. THE THROW
MUST BE JUDCED AN AUTHENTIC BOOMERANG THROW, 4. WHEN THE BOOMERANG. RETURNS,
A CATCH TAXEN WITH ONE FOOT OM THE CENTER OF THE CIRCLE SCORES 10 POINTS;

A CATCE MADE VITR (WE FOOT INSIDE OR ON TRE CIRCLE SCORES 7 POINTS; AMD A
CATCR ANYWHERE OUTSIDE THE CIRCLE SCORES 5 POINTS. TOUCHING THE BOCMERANG
BUT NOT CATCHING IT WITR ONE FOOT ON THE CENTER SCORES 3 POINTS, A TOUCH IN
TEE CIRCLE 2 POINTS, AND A TOUCH OUTSIDE THE CIRCLE 1 POINT. 5. CONTESTANTS
MAY MAKE PRACTICE THROWS IN A SEPARATE AREA DMMEDIATELY BEFORE MAKING SCORING
THROWS, 6. EACH THROW MUST BE MADE WITHIN 20 SECONDS OF TAKING POSITION,
UNLESS THE JUDGE RULES OTHERWISE. 7. EACH CONTESTANT WILL MAKE FIVE (OR
FBIER OR MORE, DEPENDING ON THE ENTRY) SCORING THROWS. 8. .PLAYOFPS, IF ANY,
VILL DOGDIATELY FOLLOW CONCLUSION OF THE REGULAR TOURNAMENT. 9. AHARDS
VILL BE MADE UPON COMPLETION OF THROWING.

ING TOOLS .

, AN AUSTRALIAN

A BLANK TO CARVE, A CEANCE TO THROW,

NOTE: DECISIONS OF THE OFFICIALS ARE FINAL UNLESS SBOUTED DOWM BY A REALLY
OVERWHELMING MAJORITY OF THE CROWD. ABUSIVE AND OBSCENE LANGUAGE MAY NOT
BE USED BY CONTESTANTS WHEN ADDRESSING MEMBERS OF THE JUDGING PANEL, OR
COMVERSELY, BY MEMBERS OF THE JUDGING PANEL WHEN ADDRESSING COMTESTANTS
(UNLESS STRUCK BY A BOGMERANG).

~ AMARDS: MAJOR TROPHIES FOR NMOVICE AND ADVANCED CATEGORIES DONATED BY
DEBIGN NEWS MAGAZIRE.

OTHER ANARDS FROM THE AUSTRALIAM TOURIST COMMISSION: QANTAS
(THE AUSTRALIAM OVERSEAS AIRLINE); AND DR. LORIN HAWES,
MUDGEERABA, QUEENSLAND, AUSTRALIA.

WEAT DOES IT ALL MEAN?
ENROLL IN TRE SNITHSOMIAN RESIDENT ASSOCIATES' BOGMERANG

FOR $8 ($6 FOR SMITESCNIAN RESIDENT ASSOCIATE MEMBERS)

IT'S SATURDAY, MAY 4, STARTING AT 10 AM.

YOU GET MOVIES, LECTURE,

AND LITERATURE. BRING YOUR O WOOD-CRAFT
WRITE SMITHSONIAN RESIDENT ASSOCIATES,
WASHINCTOM, D.C. 20560 OR CALL (202) 381-51S7.

PLUS THE POLLY RAVERSCROFT BIRTEDAY AWARD, THE M-O MFG. CO.
GOLDEN BOCGMERANG, THE I: MADE IT MYSELF PRETTIEST BOOMERANG
AWARD, THE VICE PRESIDENT HENRY WALLACE MEMORIAL AWARD, ETC.
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CHAPTER III

BIBLIOGRAPHY.

§20 Literature on boomerangs.

Much has been written about boomerangs, and from very diverse points of
view. The publications vary widely in content and quality, whichreflects
the remarkable interest boomerangs seem to arouse in all kinds of people.
ethnographers, mathematicians, hobbylsts, etc. Curiously, the quality
of the information contained in the existing literature hardly seems to
be correlated with the year of publication. Since 1836, articles omn
boomerangs have appeared in all sorts of periodicals, and a lot of them-
apparently did not come to the attention of later ‘writers, who therefore:

not seldom started anew or perpetuated old errors.

The bibliograpﬁy in the next section is a fairly complete one as regards
the more important publicationms. Certainly not everything written about
boomerangs is listed here; but eachvitem which I have, at least super-
ficially, read myself is ‘included, with the exception of articles in
daily newpapers and cartoons. Some of this literature is rather obscure
and difficult to come by. It is not easy to draw a line separating the
items to include from those better not included, which is why I included
as much as possible. Undoubtedly there exist quite a few articles, un-
known to me, which are as least as relevant as many of those listed. If
the reader knows about anything written on boomerangs which is not
mentioned in the bibliography (or notices errors), I would appreciate
his or her informing me about the releyant data (if possible, with a
photostatic copy). In the process of assembling the bibliography, which
contains some 400 items, [Greenway, 1963] and [Austr. I.A. s, 1973?71
were useful sources. Part of the recent 11terature was brought to my

-attention by Mr. B. Ruhe.

Since the subject matter of the articles is so diverse, it seemed use-
ful to indicate the nature of each-item in the bibliography. This has
been done by means of the symbols:
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PCASDBTEFMLR

The main classification is characterized by P, C, A or S:

P denotes: physics, mathematics, science.

C denotes: cultural anthropology, ethnography.

A denotes: archaeology, prehistory.

S denotes: sport.

Most of the articles are written either from an ethnographical/cultural
anthropological poiﬁt of view (C), or from a physical/ mathematical
point of view (P). S is mostly used in cases where P cannot be applied
very well. Obviously, C and A cannot always be sharply distinguished.

C does not distinguish between Australian and non-Australian boomerangs,
but usually the title of the publication provides such information. The
nature of the content is further indicated by: ‘

D: description of boomerangs, boomerang throwing, or boomerang flights.
B: good pictures of boomerangs (C,A).

T: theory, aerodynamics, mechanics, mathematics (P).

E: experiments (P).

F: pictures of flight paths (C,P).

M: directions for making boomerangs.

L: directions for launching boomerangs[

R: references.

In some instances small letters are used instead of the above capital
ones, to indicate the minor relevance to boomerangs, either because of
the subject (e.g. African throwing-irons, Melanesian clubs) or because
the article adds next to nothing to the earlier literature as regards
the considered aspect. Occasional items have a capital letter under-

lined to indicate an unusual amount of information.

This classification was made for my own use and probably reflects my
special interests. A cultural anthropologist, for instance, might prefer
a different classification. The 12 classification symbols should be
considered as rough indications, rather than as a rigid system. Some

arbitrariness was hard to avoid here.

Each item is listed in the bibliography in alphabetical order according

to author's surname. The data given are the following. Author's surname,
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initials, year of publication or submission of article, classification
(see above). Furtheri title of publication, name of periodical, number
of volume or issue (underlined), date of publication, page numbers. If
only a part of the publication is relevant to boomerangs, the corres-
ponding page numbers are added between square brackets. If a second .-
date is mentioned, it is that of the lecture or of the article's sub-
mission. Here the numbers denote: day, month, year, in this order. With
books the place of publication is added, though mostly not the publish-
er's name. Capital letters have been avoided in the titles, except for
proper names and German. Author's first names and titles (Dr., Lieut.-
Gen., Pater, Lord, Sir) are omitted. With double names no system has
been followed, e.g.: A. Lane Fox is listed under Lane Fox with a cross-
reference under Fox, R. Brough Smyth is listed under Smyth with a cross-
reference under Brough Smyth. A.C. van der Leeden is listed under:Van
der Leeden with a cross-reference under Leeden. If a publication has
more than one author, the item is listed under the first author's name
with cross-references under the other authors' names. If an item is
part of a work published under a name (B) other than the author's (1),
the item is listed under A with a cross-reference under B. Articles
written by anonymi are listed either undeF the inferred author's name,
or under the name of the person directly concerned, or else under the
(abbreviéted) name. of the periodical, etc., in each case with the addi-
tion: anonymous. Cross-references are listed at the end of the biblio-

graphy under Anonymous with years of publication.
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 PART II
AERODYNAMICS

Playthings it is indeed hardly correct to call them, as the flight
of a boomerang is a scientific puzzle that is never likely to be
solved, though many scientists have presented us with learned
though usually divergent solutions.

[Payne-Gallwey, 1906, p. 591]
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§1. Introduction

The flight of boomerangs is a complicated phenomenon: on the one
hand, the boomerang's motion depends on the forces exerted by the
air, on the other hand, these forces depend on Epe boomerang's very
motion. In its general form a problem like this can hardly be solved.
Therefore we have split it in two. Part II of this work deals with
the forces exerted on boomerangs which artificially move in a simple
way, namely in a éonstant direction, at a constant forward speed V,

a constant rotational velocity w and a constant angle of incidence

¢. To be sure, in reality boomerangs do not behave like this, but

in Part II both the theoretical model boomerangs and the experimental
boomerangs are artificially confined to this type of motion. Part III
of this work deals with the motion of boomerangs under the influence
of forces, which are at first left unspecified. Later we insert
rightly or wrongly, the theoretical or experimental forces of Part II
into our equations of motion and compute theoretical boomerang

flight paths.

Even when moving in the simple way (constant V, w and §).mentioned
above, a boomerang experiences forces from the air which are difficult
to calculate. As remarked in Part I, §19, the exchange of forces
between the boomerang and the surrounding air brings the air into
motion. If the air's ihduced_motion'would be known exactly, the
forces on the boomerang might be computed easily. However, though
the boomerang moves in a specified known manner, the air's mbtion
is not known beforehand, as it depends on the unknown forces. One
cannot begin to solve this problem unless one makes some definite
assumptions, which in our theory concern: A) the influence of the
air's motion on the forces experienced by the boomerang, and B)

the behaviour of the air when acted upon by forces. The assumptions

of kind A made by us are stated in §2, and our assumptions of kind
B in §3.

It should be clearly understood that, although such assumptions

may be plausible or "not unreasonable'” and partly similar to
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assumptions often made in aerodynamic theories, they may nevertheless
lead to invalid results. Some assumptions (e.g. linearity of the
air's equations of motion) are known to be of limited validity, but
are made because they permit an enormous reduction of the problem's
complexity. An assumption like that of the medium's incompressibility
| may be realistic enough, but some of the other assumptions may
disagree with the physicél reality. Here it is difficult to be certain:
the airflow around a rotating boomerang may'havé some features which
have not been very well'investigated at present.(This question is
discussed in §26, §32 and §33.) In Part II.(with the exception perhaps
of §26 and §33) the more physical aspects of boomerang aerodynamics
are not considered. Assumptions of kind A and kind B are made, and the

problem is forthwith reduced to one in applied mathematics.

Here follows a rough outiine of our aerodynamié model. If one traces
with a camera the centre of mass of a spinning boomerang in its flight,
and takes a time exposure, the result would be a blurred picture. The
boomerang arms are smeared out over a circular region. All the

_ positiohs successively occupiéd by the arms are shown suﬁérimposéd.
To this picture -our so-called winglet model is andlogbus. The
boomerang is replaced by a continuous distribution of- hypothetical
winglets, smeared out over a circular region. The result is a pervious
plane structure. The forces exerted by the winglet structure on the
air cause the air to move. We suppose that the air behaves like a
certain type of idealized fluid. Its induced velocity can then be
méthematically expressed in terms of the - as yet unknown - forces.
The opposite forcés exerted by the air on the wingléts can be
expressed in terms of the winglets' shapé, density and motion and

the air's induced velocity. Thus we obtain two relationships hetween'
the unknown forces and the unknown velocity field. Together these
constitute a rather nasty integral equation, which, after extensive
treatment and with the help of a computer, can be made to yield an
approximate solution for the forces acting on the winglet structure.
It is the "extensive treatment" which, presented in a condensed form,
makes up the bulk of the Chapters I, II and III. Since this model

resembles a time exposure of a boomerang rather than a boomerang
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itself, the computed forces can at best be considered as approximations
to the time-averages over one period of rotation of the aerodynamic

forces on boomerangs.

This winglet model has a curious property: each winglet structure
can be simulated by a non-rotating, rigid, porous wing‘having the
same planform (see §4). Actually, our winglet model is a steady,
linearized, porous lifting surface theory. It contains some features
which appear to be novel to lifting surface theory. As the circular
lifting surface in our case is pervious, the singularity of the lift
function at the leading edge differs from that of a normal wing.

The accuracy of the numerical integrations in the computation of the
"elementary induced velocities" is independent of the number of
pivotal points. However, our approach is ultimately based on

Multhopp's method, which is now a quarter century old.

Although the "smearing out" of the original boomerang arms to winglets
inevitably brings about a loss of reality, it has the vir;ue of
reducing the original time-dependent problem to a problem of steady
flow, which can be tackled much easier. Possibly, models of a differ-
ent kind would be better suited for application to boomerangs. For .
instance, an unsteady linearized lifting line theory, in which the
boomerang arms are replaced by hypothetical lifting lines, might

yield results more realistic than ours.

The Chapters I through V of Part II are mainly tﬁeoretical, whereas
Chapter VI is primarily a reporﬁ of experiments. In Chapters I, II
and III the winglet model is developed. Chapter IV presents a
discussion 6f the accuracy of the numerical results. The theory is
tested against experimentai data obtained'from experiments with
boomerarigs in water. In Chapter V the winglet model is modified and
extended to make it better adapted to the conditions pertaining to
real boomerangs. The most significant feature of the modified
semi-linearized winglet model is that it can accomodate boomerang

arms with arbitrary, non-linear profile lift and drag characteristics.
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Chapter VI deals almost completely with experiments on rotating
boomeréngs in a wind tunnel. The six force and torque components,
averaged over time, were measured for five different boomerangs at
various combinations of speed V, spin w, and angle of incidence v,
In §31, §32 and §33 the measurements are compared with the forces

computed on the basis of the semi-linearized winglet model.

Many of the sections of Part II are very technical, and will
probably be read only by an occasional aerodynamicist with a special
interest in lifting surface theory. He may wish to skip the
experimental sections and concentrate on the Chapters I, II, III and
V. The reader who wants to»fdllow the main line of Part II is
advised to read only the following sections, which include the
experimenté:

Chaﬁter 1: §§2, 3, 4, 5, 7.

Chapter II: §§8, 9.

Chapter 1IV: §§16, 17, 19.

Chapter  V: §§20, 21, 22, 23.

Chapter VI: §§26, 27, 31, 32, 33.

Those readers who wish to learn something about the mechanics of
boomerangs but do not like mathematigs may want to thumb through

the pages, look at the graphs, and start with Part III.

A list of references is given at the end of Part II.
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LINEARIZED PERVIOUS LIFTING SURFACE THEORY:
MAIN MOTION OF THE SYSTEM PARALLEL TO ITS PLANE.

§2 winglet structures.

The system in which we are interested consists of a number of airfoils,
not necessarily straight, lying approximately in one plane. (e.g. boom-
erang, rotor of a helicopter). Such a system moves through a fluid
(e.g. air, water), which is originally at rest with respect to an iner-
tial frame I.F. and which, for our purposes, can be assumed to extend
to infinity. ‘

We introduce a right-handed cartesian coordinate system (x,y,z), whihh
moves at a uniform velocity V in the negative x-direction with respect
to I.F. through the fluid. (Hence the (x,y,z)-system itself is an iner-
tial frame). The airfoils lie approximately in the (x,y)-plane,'their
projections on this plane remain within a reglon S which is fixed with
‘respect to the (x,y,z)-system (see fig. 2.1). In add1t1on to th1s main
.motion the airfoils may have velocities with respect to the (x,y,z)-

system, which differ from place to place. The airfoils may also change

N

fig. 2.1. Structure of airfoils.
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their shapes and their angles of incidence. However, they should not

cross or overtake each other.

Next we introduce a local right-handed cartesian coordinate system
(1,2,3), which is related to the local orientation.of the airfoils (see
fig. 2.2). The l-direction is parallel to the (x,y)-plane, pointing from
the local leading edge tbwards the local trailing edge of an airfoil.
The 2-direction is parallel to the local spanwise direction of an air-
foil. The spanwise direction of the airfoil deviates from the (x,y)-
plane by a small angle y. The 3-direction deviates from the z-direction
by the same angle y. The angle B is defined by identifying the projec-
tion on the (x,y)-plane of the 2-direction with the vector (cosB, sinRB,

0) as notated in the (x,y,z)-system.

z-direction

fig. 2.2. The local coordinate system (1,2,3).

The transformation matrix for the rotation from the (x,y,z)-system to

the (1,2,3)-system is:

sinB - cosB 0
cosBcosy sinBcosy siny (2.1)

- cosBsiny - sinBsiny cosy

N .
Next we introduce the '"relative velocity" Vr(x,y), which is the local

velocity of the fluid relative to the airfoils:
> >

-> ->
Vr =v+V-y (2.2)
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<+¥
]

(vx,vy,vz) is the local velocity of the fluid with respect

: to I.F.,
-V = -(v,0,0) is the velocity of the (x,y,z)-system with respect
to I.F.,
<>
W=

(wx,wy;wz) is the local velocity of the airfoils with respect
to the (x,y,z)-system. v

The components of these velocities are notated in the (x,y,z)-system.

The components of ;r in the (1,2,3)-system are: ’

Vrl = (V - Wx)51nB + Wy cosB +

+ {vx sing - vy cosfB}

V., = [(v - W_)cosB - Wy sinBlcosy +

+ {(-W_ + v )siny + (v_ cosB + v_ sinB)cosy} ’
z z x -y L(z.s)
Vr3 =+ {-l( - wx)cosB + Wy sinB)siny + (-Wz + vz)cosy +

= (v, cosB + vy sinB)siny}

o

By definition of the 1-direction we have v.,z0 always. The function
B(x,y) may have jumps of magnitude 7 at points where'Vr] = 0, and at
these points an individual airfoil may suddenly have its leading edge

turned into a trailing edge and reversely.

Further we introduce the local "effective angle of incidence' of the

airfoils, q(x,y),’which is the sum of the geometrical angle of incidence

fig. 2.3. Angle of incidence.

with respect to the direction of zero lift ao(x,y) and the angle:
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Vr3

rl

a*(x,y) = arctan (2.4)

(see fig. 2.3).

We assume that the interaction between fluid and airfoils is determined

by the following conditions:

A) The airfoils cannot locally exert or experience forces parallel to
their local spanwise dlrectlon, i.e. the 2-d1rectlon.>

B) The airfoils experlence a local force in the (I, 3)-plane, normal to
the direction of V - i.e. (in connection with A) parallel to the
vector (-V 3,0 V ) The magnitude 1 of this force per unit of length
along an a1rfozl, is glven by

Lity) = (v, + V2 bGxy) Cp(xy) @

where U is the density of the fluid, b is the local chordlength of
the a1rf011s and CL their local lift coefficient.

C) CL is taken to be proportlonallto sina:

C, (x,y) (3) sina(x,y) = sin[ao(x,y) + a¥*(x,y)] (2.6)

For a thin airfoil in two-dxmensxonal flow the factor of proportionality

‘theoretically is 2r. [Abbot, von Doenhoff 1959].

These conditions mean that we -apply a strip theory to the airfoils. The
assumptions A, B, C appear to be valid fori’;real straight airfoil of
large aspect ratlo placed in a uniform flow,ﬁprov1ded that the angle
between the spanwise direction and the flow direction is not too small,
and that effects due to viscosity may be neglected. [Abbot, von
Doenhoff, 1959] We expect that the assumptions w111 hold approximately
in cases where the geometry of an airfoil does not vary much within
spanwise distances comparable to its chordlength Generally, the condi-
tions will not be satisfied everywhere on S. Exceptlons are for instance
the regions close to the wingtips of the airfoils and the region where

the airfoils are attached to an axle or a central disk.
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The aerodynamic probleﬁ presented by the systems as they are described
so far would be rather difficult to solve mathematically. A time-depen-
dent case would be considerably simpler to deal with. This is our motive

for approximating the structures of airfoils by the following model.

The region S is devided into subregions s. We introduce the local "fill-
ing factor" d as the fraction of s which is occupied by the airfoils'
projections. We shall replace d, a s By Y, ﬁ by continuous functions
of (x,y) by replacing every airfoil by a large number of similar air-
foils with smaller chordlengths, in such a way that the sum of their
chordlengths remains unchanged. In the "limit" we name such "infinites-
imal airfoils": winglets. Such a system of winglets exerts forces upon
the fluid which will be distributed continuously over S: ?(x,y) per
unit of area. In general this field of forces ; will be time-dependent.
However, we shall confine our attention to those cases only where ? is
independent of tlme. Hence we only consider cases where d(x,y), a (x,y),

B(x,y), Y(x,¥), W(x,y) are time-independent.

From a somewhat different - and perhaps more rewarding - point of view
we could say: the original airfdils have been "smeared out", so that
at each point the original situation has been replaced by a kind of
time-average. The winglet model thus would correspond to a sort of time
exposuré of the original airfoils. If the original system was periodic
in time, its period should be small coﬁpared to the characteristic time
D/V, where D is the diameter of S. Thus even a two-arméd boomerang
could be simulated by a winglet model,vprovided that it would spin fast
enough. A theory based on the winglet model, of course, would at most
yield information on average forces and torques acting on the original

airfoil structure, and on average velocities of the fluid.

As far as the interaction with the fluid is concerned, only the sta-
- —> . A [

tionary field of forces f(x,y) is of importance, and a steady flow

results. For the magnitude of the forces per unit of area acting on

the fluid we have, taking into account (2.6):

f(x,y) = -uc(x,y)sina(x,y) (Vil(:c.y) + Vi3(x,y)) 2.7)

160



where ¢ depends on the local density and profile shape of the winglets:

CL(x,y)

c(x,y) = d(x,y) (2.8)

2sina(x,y)

For thin airfoils we would obtain theoretically (see remark under C):

c(x,y) = N.Q(x,y) : | (2.9)

We remark that the condition

-> > ‘
f LV ' (2.10)
r

which is part of condition B, follows from a general argument, which is

valid if viscosity is absent. Locally at the point (x,y,0) the winglets,
-> -

per unit of area of S and per unit of time, do the work f(x,y).(W(x,y)

- V) on the fluid. On the other hand the fluid there wins, per unit of

-> > > > >
area and per unit of time, the energy f(x,y).v(x,y). Therefore: f.(W-V)
-> - -> -> -> -+ -
= f,vand £ L (v+V-W.

' -
The components of f in the (1,2y3)-system are:

v 3
- - _r3
fl = f3 .Y
rl
f2 =0 “(2.11)
_ : )
f3 = - pc sina Vrl r17+ Vr3 ]

After substitution of (2.3) and (2.4), (2.11) shows how the forces ?

depend on the fluid's velocity v. (2.11) gives a description of the
interaction between winglets and fluid which is a property of the wing-
let structure. On the other hand in §3 a relation between f and v will
be derived which is a property of the fluid. This relation will be a
linear one, since we will linearize the equations of motion for the

fluid. An exact, non-linear theory would be extremely difficult to work

out.

Under whichconditions is the application of the linearized theory to a

winglet structure justified? The angle of incidence a(x,y) should be

small, this means: -
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a (x,y) << 1

Y (x,y) << 1 - x2.12)

WZ/JQV - wx)2 + W << 1

o

The conditions can be formulated more exactly this way: Take a system

. -> .
with V, ao(x,y), B(x,¥), Y(x,y), d(x,y), W(x,y) given. Now multiply @,
Y and-w by a small factor €, and let € tend to zero. Then a0 Y, W

z

are of 0(e) and so will be Ve vy, Vs f . However, f*, f will be of

0(e ) The essence of the linearized theory is that. quantltles of

O(E ) are neglected with respect to those of O(e ),

In (2.3) the terms between braces are of O(e). We shall now linearize.
The sign "~' between two expressions means that the relative difference

between these expressions is of 0(e). (2.3) becomes:

Vrl 4 (Vv - Wx)slnB + Wy cosB

Vr2 ~ v - Wx)cosB - Wy sinB | (2.13)

Vr3 S~ [(v - Wx)cosB - Wy sinBly - Wz + v,

We define the local "effective velocity" Ve(x,y) by:

2 2 o
gt Vr3 s (V QX)SLnB + Wy cosB

ne.
o
1))

v, (2.14)
And the angle a, by:

- [(v - Wx)cosB - Wy sinBly - Wz + v,

sina SN a  +
o

¢+ 0 (2.15)
The linearized version of (2.7) becomes:

vz(x,y,O) 2
f(x,y) ~ - ue(x,y) [ao(x,y) + ae(x,y) + -V;?;T;T_} Ve(x,y) (2.16)
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And (2.11) becomes:

vz
fI N8 - f3.(ae +-V;
f2 =0 > (2.17)
f3wf )

The linearized components of f in the (x,y,z)-system are

- Yz, 2 Yz, v ' W
fx N+ uc(czo +a, +—V._) Ve(cze +-{,—)sin6
’ e
> (2.18)
v v !
£ ™~ - ue(a +a, +'{,—z') Vﬁ(ae +—V‘g‘)coss
y e e
vV, _
fz N~ uc(uo ta, +—v—;) Ve | (2.19)

As far as the linearized theory is concerned the fluid is acted upon
by the force field

Fx,y) ~ (o,o,fz'(x,y)) (2.20)

situated in the region S of the (x,y)-plane. The linearized fluid dy-
namics in §3 will lead to an integral relation of the form
L (r
Vz(x,y,o) ~ 4V Ié( Ko(x,}’,E,n) fz(£9n)d€dn (2021)

The equétions (2.19) and (2.21) together constitute an integral equa-
tion for the function fz(x,y).

In some cases c, @, By Y E may be khown beforehand, but in other
cases some of these quantities may depend on the forces which the wing-
lets experience from the fluid (as, for instance, in cases with elastic
bending). In those cases one or more additional equations may be needed
to determine the behaviour of the system. (Remember that we only con-
sider systems giving rise to a steady flow). A simple example of such

a system is discussed by Hess [1973, §3].
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§3 Linearized fluid dynamics.

The behaviour of an ideal inviscid incompressible fluid is determined
by the following two equations [Kotschin, Kibel, Rose, 1954], the equa-

tion of motion:

->

->
n %%'= E - grad p o o (3.1)

~

and the equation of continuity:

div v =0 (3.2)
The used symbols have the following meaning:
;: velocity of the fluid,
p: pressure in the fluid,
u: density of the fluid (constant),
;: external forces per unit of volume acting on the fluid.
The operator 4 stands for 2, 3.V

dt ot ,
We shall use a right-handed cartesian coordinate system (x,y,z).

" The left-hand side of (3.1) is not linéar in ;, which makes an exact
treatment of the fluid's behaviour very difficult. Therefore we shall
work with a linear approximation. We assume ; and 3,to be small of 0(e)
(for an explanation see §2), and we neglect quantities of 0(en+l) with
respect to those of O(En). The linearized theory tends to be exact as €

tends to zero.

Taking the divergence of both sides of (3.1), we obtain

odv L
u d1v'zz-= div F - div grad p (3.3)
Or, correct to O(g):
D-.’l
div F = div grad p (3.4)

This Poisson's equation yields for an infinite region:

p(x,¥,2,t) = [[f - 7= div F(E,n, L, ) dEdndr (3.5)
G o

or the more convenient expression:
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: > -+
PG,y,2,8) = fff ZEMEDIE grgnge
with ¢ bme (3.6)

T=(x-% y-n, z-2)

-> . . )
We assumed that F vanishes outside and on the boundary of a finite re-
gion G. From (3.6) it can be seen that the pressure field can be re-

garded as a superposition of pressure dipoles.

From now on we confine our atténtion to cases where a field of external
forces ; moves uniformly through a fluid which was originally at rest.
The cartesian coordinate system (x,y,z) is chosen in such a way that its
origin moves with the field of forces and the negative x-axis points in
the direction of motion. With respect to this inertial frame we have a
stationary field of forces in a uniform flow with a constant velocity V

in the positive x-direction. This presents a steady flow problem.

->
-If the velocity of the f1u1d with respect to this system 1s V + v, with

V = (v,0,0) of 0(l) and v = (v ,vy,v ) of 0(e), ‘the equation of motion
(3.1) becomes

> -> -+ -> 1 > 1 .
V.)v + (v.V)v = ;-F -3 grad p (3.7)

and the linearized equation of motion is:
-> - ]i-» 1
(V.V)v =-; F -'; grad p (3.8)

We are particularly interested in fields of forces acting on a finite
region S in the (x,y)-plane, with the forces directed parallel to the

z-axis. In these cases the field of forces can be represented by:

;(x,y,z,t) = F(x,y)6(2)
with , (3.9)
= (0,0,£,(x,y))

where § denotes Dirac's delta function. The pressure field (3.6) now
becomes:
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fz(E’n)z h
p(x,y,2) = [f 53— d&dn
S 4brr

with - > (3.10)

r = [(x-E;)2 + (y-n)? + 22];'

An expression for v, on S can be obtained as follows. The z component
of (3.8) is:

avz 1 1 3p
PV e—=—- Fz -— (3.11)
ox ! M 0z

Together with (3.9) and (3.10) this leads to

o
vz(x,y,z) = 'IJ‘V I[fz(x-rr,y)(s(z) =

-0

.9 z fz(Em)

-— —& dEd{]dr (3.12)
9z S {(x+t~5)2+(y-n)2+z2}3/2 4m

Here we have used the conditions that fz, gz and v, vanish in the limit
X > e v, is an even function of z and continuous at 2z=0: vz(x,y,O) =
%i% vz(x,y,z). For z # 0 the first term in the integrand of (3.12)
vanishes, we then obtain by changing the order of the integrations and

the differentiation:

o 1 o 9 z .
v_(x,y,2z) = II[ [-— d;]f (£,n)dgdn
z bruyV S L -= 3z {(x+r-E)2+(Y'n)2+22}3/2 z

(3.13)
This can be written as:’

v,(y.2) = s ] G,z 6mE, (6, dedn (3.14)

with

% | , zz-(y-n)2 ‘{ x-£ }
Xy3¥52,Ey0) = T 5>, ]l + +
° [22+(Y-n)2]2 [(x-E)2+(y-n)2+22]£

22 (x-£)
+ - (3.15)
[zz+(y-n)2][(x-5>2+(y-n)2+22]3/2
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Substitution of z=0 into (3.15) yields:

. -1 . '
Ko(x,y,i,n) == £ (X y:o E,n) = 2 {l + i} (3. 16)
(y-n) [(x-8)° + (y-n) 2]

Obviously this kernel has a second order singularity for n=y and £ < x.

Q.

Because of this singular behaviour it is not permitted to simply sub-
stitute z=0 into (3.14) in order to obtain an expression for the induced

velocity v, on S. A careful analysis yields:

v, (*%,5,0) = lim v _(x,y,2) = 4wuv ﬁf K (x,y, »n) f_(E,n)dEdn 3.7
z>0

where ﬂ denotes the Hadamard pPrincipal value of the integral w1th re-

spect to n, defined by

b £(n) £(n) 2
f ——adn = 11m [{?- }- dn -3 f(y)}
a (y-n) a y+B y-n)
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§4 General character of the integral equation and its solution.

In this section we shall investigate the general behaviour of the solu-
tion of the integral equation resulting from (3.17) and (2.19). It can

be written in the form:

L(x,y) = P(x,y) = Q(x,y) zl;ﬁf K (x,¥,8,n)L(E,n)dEdn (4.1
S

where Ko(x,y;E,n) is given by (3.16) and where we have used the abbre-

viations:

d
]
(2}
~
[ 2]
o
+
Q
o
~
lo

> > (4.2)

-

The meaning of the symbols has been explained in §2. Note that Q > O.
(4.1) is an integral equation (with singular kernel) of the second kind,
and it may be expected that the behaviour of its solution near the
boundary of S will differ from the solution of the iﬁtegral equation

for an ordinary lifting surface, which is of the first kind.

First we shall investigate the behaviour of the solution in x-direction.
Some essential information might already be obtained by studying the
simple two-dimensional problem where the region S is a Strip in y-direc-
tion: -1 < x < 1, and where P and Q do not depend on y. In this case

(4.1), after integration with respect to n, reduces to:

+1
Lx) = P(x) - Q) 7= § K(x,E)L(E)d (4.3)
with
R0 =% (4.4)

The solution of this integral equation can be explicitly found ,
[Muskhelishvili, 1953], but for the sake of simplicity we shall only

consider the case where P and Q are constants. We then have:
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' 1 +1
L(x) = P - Q.- ¢ (4.5)

-l .

Its general solution is, provided that the singularities of L at x = %I

are not stronger than those of (1 ¢ x)-1+6 with § > 0 [Muskhelishvili,

1953, Ch. 14]:
1 arctaniQ

L(x) = <I+x> .{l * o (4.6)

where C is an arbitrary constant.

-

If Q tends to « with P/Q remaining finite, we obtain the solution

2P [1-x c
L(x) = 3 /m- .{l + l-x} (4.7)

which corresponds to an ordinary two-dimensional flat plate placed in

a homogeneous flow under an angle P/Q.

For each value of C (4.6) represents a different mathematical solution
to the integral equation (4.5). A definite choice for C has to be made
to obtain the unique solution corresponding to the physical system to

which we want to apply the theory. In the case of ordinary lifting sur-
faces the choice

cC=0 (4.8)

is generally made. It corresponds to the Kutta condition: the trailing
edge singularity vanishes. This condition is generally found to be in
agreement with experiments. Further down in this section it is shown
that porous lifting surfaces.obey an integral equation similar to ours.
It seems plausible that the Kutta condition would apply to these per-
vious lifting surfaces as well. We decide to make the choice (4.8) also

for our winglet systems, but we recognize that its justification can be

obtained from experiments only. We then have:

- arctaniQ

L(x) = ( ) - (4.9)
X /Hle 1+x
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Returning to the original three-dimensional equation (4.1), we can see
that the behaviour of L(x,y) near the boundary of S varies from place
to place with Q(x,y) hence with the local density of the winglets and

their local effective velocity Ve.

There exists a remarkable analogy between winglet structures and porous .
lifting surfaces. With a normal non-porous lifting surface placed in a
homogeneous flow the induced velocity must be such that the resulting
flow is tangential to the lifting surface. With a porous lifting sur-
face, however, there may be a leakage through it. If this leakage is
taken proportional to the pressure difference between the two sides of
the lifting surface, the induced velocity satisfies the equation:

Vz(x’Y)
—v = "e(xy) + o(x,y)L(x,y) (4.10)

Here o denotes the local angle of incidence and. o the local porosity
coefficient. The other symbols have the same meaning as before. This

leads to the integral equation -

S(x,¥)L(xY) = a(x,y) - 7 §f K (x,5,6,ML(E,n)dEdn  (4.11)
| E |

where Ko(x;Y,E,ﬂ) is the same as in (4.1). The two-dimensional case is
treated by Barakat [1967].

Thus a winglet structure can be exactly simulated by a porous lifting

surface with angle of incidence

P ve
a(x,y) Q" (a°+ae)-—- (4.12)
A
"and porosity coefficient
o(x,y) =—é = ?3" (4.13)
e

We see that the limit Q + = corresponds to a vanishing porosity coeffi-
cient, and the integral equation (4.1) tends to one of the first kind.

On the other hand, in the limit Q + O the integral equation tends to

the algebraic equation:
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L(x,y) = P(x,y) _(4-14)

In this case the induced velocity is of no importance. (Invféct essen—

tially (4.14) was used in a simple theory for boomerangs by Hess [1968]).

Because of the leading edge singularity a concentrated "suction" force
of O(ez) acting on the leading edge might exist. We assume'this to be a
local phenomenon, depending only on the local singularity in the lift
distribution. Therefore the energy associated with "suction" forces
taken locally from the fluid at the leading edge can easily be calcu-
lated by considering again.the. simple two-dimensional case. The total
work done on the fluid in this case is zero. The energy taken from the
fluid at the leading edge thus must equal the work done on the fluid
between leading and trailing edge. This, per unit of time and per unit

of length in y-direction, is given, correct to 0(52), by,

- V3 * vZ(X) :
u [ L(x) dx : (4.15)
| \'J

L(x) is given by (4.9) and vz(x)/V follows from

v -~
L:p...Q_E. (4.16)
. \'/

After substitution in (4.15) and integration we see that the integral
vanishes if Q is finite. (Only in the non-porous case, Q = =, the inte-
gral in (4.15) generally does not vanish; in this case a suction force
exists, which is a well known phenomenon.) Thus no suction forces act
on the leading edges of porous lifting surfaces or winglet structures.
AHowevef, in particular for high values of Q, one may expect peaks in
the second order forces fx and £ near the leading edge. (The mistaken
assertion in [Hess, 1973, §5] that suction forces are generally present

if Q > 0 is based on an error in the calculation.)

Let us now consider the behaviour of the solution of the integral equa-
tion (4.1) in y-direction. Since we are particularly interested in cases

where the region S is circular, we shall consider the case where S is a
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circle with radius 1.

Probably we can obtain some essential information as to the behaviour
of the lift function near the "wingtips" y = %1, by considering the

simple case where L(£,n) = L(n), independent of E. The integral in

(4.1) then becomes:
+1 L(n)

x-E }_ |
d&dn 4.17)
-1 (y-n) -/1- 2 .{ /(x-£)° +(y-n)

'We choose x=0. Then the integral with respect to { is simply equal to
2/1—n2 and (4.17) becomes:

;l L(n).2Y1 -ni +1

dr(n) dn

=- ¢ TR (4.18)
-1 (y_n)Z -1 n y-n ,

where we have put
2/1-n% L(n) = T(n) (4.19)

and made use of the assumption that I'(l) = I'(-1) = 0. (4.1) now becomes
(for x=0):

F(Y) +1 dr(m) 4
/i P(0,y) + Q(0,y) = _f T 3on (4.20)

This integro-differential equation is of the type which is examined by
Muskhelishvili [1953, Ch. 17]. By using the results given by him, it is
easy to show that, in the special cése in which P(0,y) and Q(O0,y) are
constants

I'(y) = 2./I-y2.L(y) = 0(/l-yi) (4.2D)

for y close to £]1. We assume that (4.21) will generally hold if P(x,y)

and Q(x,y) are functions corresponding to actual winglet structures.

Finally it may be remarked that the method for solving the integral
equation (4.1) outlined in the following sections obviously can also be

appiied to porous lifting surfaces satisfying equation (4.10).
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§5 The collocation method.

From now on we shall consider systems where the region S is circular.
The structure of winglets'performs a translational motion and a rota-
tional motion around an axis. through the centre: of the circle. parallel
to the z-axis. A system like this is described by the equations (3.17)
and (2.19). In our problem the motion of the winglets is given and the

forces on the winglets are to be found.

We start from equation (3.17), which for a circular region S with

radius a takes the form

( -£_(E,n) { X=E
4wuv v_(x,y,0) = —_— 141 + d&dn
2" - "/az*nz (y-m)?2 [ (x-£) 2+ (y-n) 21}

(5.1)
4nv;(x',y',0)=
;l +'l}n' -£!'(&',n )‘{ -g! J_
= — 1 + dg'dn' (5.2)
-1 -»/l-n'2 (y'-n')2 ~ [(x'-E')2+(y'-n')2]

where

x' =x/a, y'=y/a, E' =¢fa, ' = n/a,

. 2 (5.3)
= vz/V, fz = fz/uV

are dimensionless quantities. For convenience we shall drop the primes
from now on and write: x,y,&,n,vz,f

We introduce the following symbols:

3 X A
X' = X =
B S |/1-y2
L xS
T = =X > (5.4)
V1-n V1-n
~y-n
Y =
/i=n2 J
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X' and X will be used as new variables instead of £ and x. In (X',n)-

space the circular region S is transformed into a square.

We expand f;(&,n) in a series in £ ("chordwise'") direction with coeffi-

cients depending on the ("spanwise") coordinate n:

M-1 .
._fz(g,n) = pio ap(n)Hp(X ) (5-5)

with:

HP()‘(.'V) = sinp, p = 1,2,...,M~1
H (X') = §(m¢), p=0 (5.6)
X' = -cos¢

The function 4(m-¢) replaces the customary cotgi¢ term of the Birnbaum
series. The cotgl¢ guarantees the correctlbehaViour of the load function
near the leading edge of an ordinary lifting surface, while each ofvthe
terms yield fhe correct behaviour near the trailing edge in that case.
Uhfortunately, we cannot make such a claim for the series expansion
(5.6) in our case. On the other hand, since the behaviour of the load
function generally varies from place to place near the boundary of S

(as explanined in §4), it is impossible to obtain a series expanéion

of the type (5.5) which would yield the correct behaviour everwhere
near the boundary of S. We found by actual numerical calculations that
the customary series with the cotgi¢ term gave satisfactory results

only in cases with large values of Q (as could be expected, see §4) .
Omitting the cotg£¢ term, however, gave rise to solutions with a tend-
ency to build up a peak near the "leading edge". This peak, in partic-
ular for higher values of Q, could only be formed at the cost of a some-
times strongly oscillating solution. The choice of the function }(w-¢)

is a compromise which seems to give reasonable results.

The functions ap(n) are expanded as
N

ap(n) = 121 aplGl(n) (5.7)
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with

inl9
G(n) = £EZ 1= 1,...,N

sind
(5.8)
n = -cosd
It will be convenient to use the functions h,(n) defined by:
h,(n) = G, (n) /1-n? = sinle (5.9)
Substitution of (5.7) into (5.5) yields the series expansion for
£,(&,n):
N M-1 .
£, (&n) = I I a 1Gl(n)H (x") ) (5.10)
1=1 p=0
which is in accordance with (4.21).
After substitution of (5.5), (5.9) and (5.4) into (5.2) we obtain
N M-1 :
v (x,y,0) = L I a.v . (X,y) (5.11)
z 1=1 p=0 pl pl
with
| ;1 h, (n) }l X-x'
vo1Xy) = = <l + — H (X')dX'dn (5.12)
pl ? 41[ -1 (y_n)z -1 [(X"X')2+Y2]£ P
We now have
N M-I ' N M-l ‘
z I a H (X6, () =PEXy+QX,y) I I a.v X,y)  (5.13)
1=1 p=0 pl'p 1 1=1 p=0 pl pl

as an approximation to the original integral equation (4.1). Our method
for solving this equation will not be essentially different from
Multhopp's collocation method [Multhopp, 1950]. We choose NxM pivotal
points (X )Yy, )s (W =1...M, v=1,..N) and demand that (5.13) be sat-
isfied at each of these points. There results a set of NxM linear alge-

braic equations, which can be solved for the NxM unknowu coefficients
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apl’ (p=0...M-1, 1 =1...N).

The computation of the NZM2 elementary induced velocities vpl(xu’yv)
(one for each pivotal point for each term in the series expansion) re-

presents the bulk of the work required by this method..
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§6 The elementary induced velocities.

Expression (5.12) has to be brought into such a form that it can be

numerically evaluated at the pivotal points. The expansion of the inte-

gral with respect to X' in (5.12) near n=y contains a term

dH )
7<L—J1 (y-n)“1n|y-n]|
dx" x

(6.1)
Therefore we write (5.12) in the form
+1 hl(n) }l §LX'
4m v (X,y) = [ {1 + —~——————}H (X')dx' +
pl -1 (y-n)2 -1 [x—x')2+Y2]% P
2
dH (y-n) dH 1
+< p) 5 lnly-nlildn -(—2 — f h (n)lnly nldn (6.2)
XX 1-y dXXx 1-y° -1

The expression between rectangular brackets is twice differentiable

with respect to n at n=y.

Introducing the functions:

}l X-X' )
£ (X,y,n) = -{1 + i H (X')dx' +
P -1 [(X-x")2+v2)?
(y-n)
( > ln y—nl > (6.3)
X l—y
1 de
g (X,Y) == — '——€>
P 1-y2\ ax/x
we can write (6.2) as
+1 h;(n) +1

b v__(X,y) = ﬁ
pl -1 (y-n)

2 fp(x’st)dn+gp(X,Y)-{ hl(n)lnly-nldn

(6.4)
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Next we define the function Rp by:

<3f (X,}',ﬂ)) ‘
fP(X’st) = fp(xay’Ys) + (n-y) "‘"——' + Rp(xry,n)

on y

. 2
- Near n=y Rp(X,y,n) contains a factor (y-n)~ and

R_(X,y,n)
(y-n)

(6.5)

(6.6)

is continuous at n=y. In [Hess, 1973, §8] an expression is derived for:

Sp in the limit n - y:

2

1 1+2y
SP(X:Y’Y) = —'3[ XHP(X) +

1-y? L1-y?

( > {——-x + 4+ W[20-0)V1-y ]} +T (X)]

with

Il aH dH_ ax' H (X)
P e T
- P X dax'/x' \ax'/xd x'-x 1-X

H o
<d ) 1n[201+X)] + Bp=0
dx'/x 4(1+X)

Further we have
X
£,(%y,y) =2 J u (x )dx"
. -1

afp(X,Y,n) 2y
<, :> = 2 XH (X)
- -on y I-y P

>(6.7)

s (6.8)

B

The first expression follows directly from (6.3) and the second one is

‘derived in [Hess, 1973, §8l.

Now we can write (6.4) as:
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+1 h,(n) If_(X,y,n) +1 h,(n)
bm v 1(X:Y) = £ _(X,y,y) 1 dn +<_L——> ﬁ 1 dn +
P P -1 (y-n)" an y -l ny
+1 +1
* 8, (%,y) _{ h; (M) 1n|y-n|dn + _{ hy(MS (K,y,mdn
(6.9)

The first three integrals in (6.9) can be evaluated analytically, the

last integral has to be evaluated numerically.

In order to avoid being forced to compute its integrand for n too close
to y, we choose y itself as an integration point and write the integral

as

+1 - f & = :

/ s_(X,y,n)h,(n)dn =Jl [+ }s (X,y,-cosd)sinld sindds  (6.10)
P 1 o P

with
n = -cosd, Yy = —-cos® “(6.11)

The integrand of (6.10) vanishes- for =0 and 9=m.

As a final expression for the elementary induced velocity v

we now
pl
have: '
1 of (X,Y.n)
Vo1 (%s¥) = 7 | by (M E(X3,3) + ¢ (y) .- +
. y
=] W
+ dl(y)gp(x,y) +{ [+ }Sp(x,y,—cosa)sinlo sinﬂdt‘{l (6.12)
: o e
where bl(y), Cl(Y)’ dl(y) are given by:
_ _ ., sinl® ' A
by(¥) = -ml sin®
c,(y) = m cosl® L (6.13)
_ T Jcos(1+1) ©® _ cos(1-1D©
4 = 2{ 1+1 1-1 } 122
=_12r_ {} cos2©- 1n2} _ 1 =1 J
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We still have to substitute the expressions (5.6) for the functions

Hp(x') into the formulas. We put

X = -cos? (6.14)
Then we have
X 1 ) 3
f Hp(X')dX' =3 - (cos® sinpé-p sin® cosd) p=2...M-]
= §(® - } sin2¢) p=1 - L (6.15)
= T=-s1in®=(m-%) cosd P=
i( ind-(m-9) ) 0 ]

The integral in the expression (6.3) for fp has to be evaluated numer-

ically, but it can be simplified by integration by parts:

+1 ilx'
f {1 + Yzli}up(x )ax' =

-1 [(ELX')2+

L 2,24
=p f [ (X+cos¢) “+Y“] cospd d¢ P=2...M-1.
A o ]

r (6.16)
n R 2,214 |

=3¢ f [ (X+cos¢) “+Y“] cos$ d¢ p=1

o

- T
{l+[(X+l)2+Y2]£}‘§ J [(X+cos¢)2+Y2]£d¢ p=0
o

I
nl=2
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§7 The resulting forces and torques.

In this section expressions are derived for the resulting forces and
torques acting on the structure of winglets. We are particularly inter-
ested in the following six.quantities.(seehfig.j7.]): the: forces in x-,.

y- and.z-directions: Fx, F_, Fz’ and the torques ‘around the x-, y- and-

y
z-axes: Tx’ Ty’ Tz. The dimensionless equivalents of these, indicated

fig. 7.1. Forces and torques acting on system.

by a subscfipt 0, will be evaluated. In order to obtain the actual
forces and torques. one: should multiply-the dimensionless quantities by -

uV232 and qua3 respectivelyf (a is the radius of the winglet struc-

ture). The 1lift:
F, = {g - £, (x,y)dxdy (7.1)

The torque due to the lift distribution, with components:

'Tox {{ - fz(x,y)ydxdy ‘ (7.2)

and

Toy = JJ + £ Cuy)xaxdy (7.3)
The force in the (x,y)-plane, with components:

Fo= {y - fx(x,y)dxdy ‘(7-4)
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and
Foy = {! - fy(x,y)dxdy

where fx and fy are defined by (2.18).

And the torque around the z-axis:

oz — {;-{+ fx(i.y)y - fy(x,y)x}dxdy

(7.5)

(7.6)

In the first three of these integrals we substitute the series expan-

sion for fz(x,y) as given by (5.5) through (5.10):

N M-l +1 o+l
Fop = 2 E 2, J h, () IR (X)dXdy
1=1 p=0 -1
N M-1 . +1 +1
Tx= I I a, [nMmy I H (X)dxdy
1=1 p=0 -1
N M-l :
oy = L I -a, I h (y)/ y2 j H (X)XdXdy
y - 1=1 p=0 P

After evaluation of the integrals we obtain:

l
oz A

o
]

(a +all)

l
T =-3" (a +a )

oXxX
N (ia +a21)
fy = =TI =
o 1=1 (1-2)1(1+2)
1 odd

(7.7)

(7.8)

(7.9)

(7.10)

(7.11)

(7.12)

When the integral equation for the load function fz(x,y) is solved by

the method outlined in the preceding sections, the induced velocity v

can be calculated either according to the algebraic equation (2.19) or
according to the integral equation (3.17). The results will differ,

since the solution for fz is not exact. Only at the pivotal points

there is agreement, and only there we can épply (2.18). In order to

evaluate the integrals in (7.4), (7.5) and (7.6) we shall expand the
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functions fx(x,y) and fy(x,y) in series which are quite analogous to
the expansion (5.10) for fz(x,y). The coefficients are determined by
the requirement that the series have the calculated values at the N.M

pivotal points. Thus we put:

N M-1i
-fx(x,y) = I L b pl 1(y)H x (7.13)
1=1 p=0
and
N M-l
-f (x,y) = £ I G H (X 7.14
y(x y) 21 oo ©p1 1(y) p( ) ( )

These equations have to be satisfied at each of the N.M pivotal points,:
where fx and fy are known. There result two sets of N.M linear alge-
braic equations which can be solved for the unknown coefficients bPl

and cpl'

If we accept these series expansions for fx(x,y) and fy(x,y) we obtain:

N M-1 +1 +1
F,= % I bpl f h, () [H (X)dXdy (7.15)
1=1 p=0 -1
M-1 }1 }1
F = 2% z c h. (y) H_(X)dXdy (7.16)
°F jayp=0 PL-3 177 0P

N Ml +1 +1
Toz = 51 p:o {}bpl _I hl(y)y_{ H (X)dXdy +

f h (y)/ yi I H (X)XdXdi} (7.17)

The integrals can be evaluated, just like those for the lift distribu-

tion, and we obtain:

2

]
Fox =" (bo]+bll)’ (7.18)
F =12 +c. ) (7.19)
oy & ol 11 , :
N (dey+e,q)
T = 112(b°2+b]2> s+ 3y ol 217 (7 20)
1=1  (1-2)1(1+2) .

1 odd
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CHAPTER II.

LINEARIZED PERVIOUS LIFTING SURFACE THEORY:
MAIN MOTION OF THE SYSTEM AT AN ANGLE ¢ WITH ITS PLANE.

§8 Linearized fluid dynamics.

In this chapter we will consider the case where a field of external
forces pointing in the z-direction is moving through an ideal fluid
with a velocity having a component in z-direction. The field of forces
is the same as the one considered in §3. The conditions under which

this model can be applied to winglet structures are discussed in §9.

Again we choose a cartesian coordinate system (x,y,z) in which the

field of forces is at rest, and we have a steady flow problem.

fig. 8.1. The system considered in this chapter.
Let the undisturbed velocity of the fluid with respect to the (x,y,2z)~
system be:

V = V.(cosy,0,siny)
with ’ (8.1)

V>0,0c< |y <mn/2

and the disturbance velocity field:

->
= v v
v (vx, v z)
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The linearized equation of motion in this case is again given by (3.8).

The equation for the z-direction is now:

3vz avz' 1 1 ap
V cosp — + V sginy —= = — F - — : (8.2)
ax 9z ™ ¥ 3z '

The meaning of the symbols is the same as in §3.
Again we consider the case where the field of forces has the form (3. 9).

The pressure field p is then given by (3.10). Integration of (8.2)
yields:

o
vz(x,y,z) = E%'-i [fz(x+rcosw,y)6(z+rsinw) -

z+tsiny fz(E.n)
2}3/2

3= I

dEdn:I dt (8.3)
S {(x+1cosy~&) +(y-n) +(z+rs1n¢)

47

Here we have used the conditions that fz, %2 and v, vanish in the limit

(x,y,2) » -».(cosy,0,siny). The first term of the right-hand side in
(8.3) yields:

 —— fz(x-zcotgw,y) if z.siny > 0
uV|siny|
and (8.4)

0 if z.siny < O

In the second term of the right-hand side in (8.3) we change the order

of the integrations and the differentiation:

1 f j z+Ts1iny
f[ -2 dt:lf (g,n)d&dn
4ruv S L-w 32 {(x+1cosy-£) +(y n) +(z+181nw)2}3/2 z
(8.5)
The expression between brackets in (8.5) equals ‘
_ z2 22 (x=g)cosy-zsiny coszw
K (X,Y,Z,«E,n) = + + - (8.6)
v (pto)p 3 (p+o) 292  (p+0) zp (p+0) 2

with:

185



p = /Qx-£)2+(y—n)2+zz, 0 = =(x~E)cosy - zsinwv (8.6a)

We need an expression for vz(x,y,O). Substitution of z=0 in (8.6) leads

to

K, (%5, E,n) def E@(x,y,o.é.ﬁ) =

~-cosy (x-£)
> (8.7)

e 2\ T
{V/(x=8) “+(y-n) "= (x~&) cosy} - Y (x=E) T+ (y=n)

This kernelfunction, however, has a singularity for £=x, n=y. Therefore
we shall consider vz(x,y,z) for z#0 and approach the plane z=0 from the
upstream side, where the kernelfunction has no singularities. Hence if

siny > 0 we approach from the side with z < 0 and conversely.

We only need to evaluate the integral with respect to £ and n in (8.5)
over a region G of sufficiently small diameter coﬁtaining the point
E=x,n=y. For the rest of the region S we can simply substitute z=0. It
turns out that the limit

lim [f K (5,2, )£, (€,n) dgdn (8.8)
z>0 G
zsiny<0

over a small region G containing the point (x,y) depends on the shape

of G. [Hess, 1973, §12]). I1f G is a strip in {-direction with vanishing
width, (8.8) yields: : '

si:wl £,(09) | (8.9)

and if G is a strip in n-direction with vanishing width:
2w|sinw[ fz(x,y) | ' (8.10)
Hence we obtain as gxpressions for vz(x,y,O):

£ (x,y) |

v, (x,y,0) = = + ¢ K, (x,y,6n)£,(E,n)dEdn  (8.11)
- 2uV|siny|  4muv S

and
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fz(x,y) | siny| 1

vz(x,y,O) = + ¢j Kw(x,y,i,n)fz(i.n)dndﬁ (8-12)
2uV 4muvV S .

It can easily be checked that for y=0 K‘p reduces to the kernel of the

integral equatipn in chapter I, Ko,'as given by (3.16).

In the special case y=zin Kw(x,y,i,n) vanishes and both (8.11) and
(8.12) reduce to

‘ fz (x,y) :
vz(x’Y90) = (8.13)
: 2uv
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v App Lrearion to wingLet STtructures.

In this section we shall discuss under which conditions the theory of
the preceding section éan be applied to the structures of winglets
described in §2. As before the infinite fluid is originally at rest

with respect to an inertial frame I.F. The winglets occupy the two-
dimensional region S, which is fixed with respect to the (x,y,z)-sys-
tem. This coordinate system moves at the velocity -V = -(Vcosy,0,Vsiny)
with respect to I.F. We use the local coordinate system (1,2,3) which
was introduced in §2, and the symbols a, B, Y, d, c. The angles B and

Y are shown in fig. 2.2, o is the winglets' effective angle of incidence

(see fig. 2.3), d is the local "filling factor", c follows from (2.8).

The local relative velocity of the fluid with respect to the winglets
is: v

V_=Ve+v-W (9.1)
where :
-3 = -(Vcosy,0,Vsiny) is the velocity of the (x,y,z)-system with resbect
to i.F. |
E = (vx;vy,vz) is the local velocity of the fluid with respect to I.F.
W= (wx,wy,wz) is the local velocity of the winglets with respect to

the (x,y,z)-system.

->
The components of Vr in the (1,2,3)-system are:

vrl

(Vcosw-wx)sin8+wycoss + 3

+

{vx sinB-vycosB}

<
|

2= [(Vcoswiwx)cosB—W&s1nB]cosY +

+

{(Vsinw-wz+vz)siny+(vxcosB+vysinB)cosY} > (9.2)

<
(]

£3 Vsinycosy +

+

{-[(Vcosw—wx)cosB+WysinB]siny+(-wz+vz)cosy -

(vxcosB+vyslnB)s1ny}

Remember that by definition of the I-direction: Vrl > 0 always.
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The effective angle of incidence a(x,y) is the sum of the geometrical
angle(of incidence ao(x,y) and the angle a*(x,y) as given by (2.4).
According to the assumptions A, B, C of §2, the force per unit of area
E in the direction.(-vr3,0,vrl), which is exerted by the winglets on
the fluid, has the (positive or negative) magnitude f(x,y) which is
given by (2.7). The components of ; in the (1,2,3)-system are égain
given by (2.11).

For a linear theory to be strictly correct it is required that the

angle of incidence @(x,y) be small of O(e). This means that the follow-
ing relation should hold:

\')

tg a + -‘-,-f-?—= 0(e) (9.3)

For rigid winglet structures this condition generally cannot be satis-
fied on a considerable part of S, except for values of |y close to zero.
For those special cases where (9.3) is approximately satisfied a correct
linear theory could be developed. After substitution of (9.2) into (2.11)
and transformation to the (x,y,z)-system, we would obtain expressions
for fx’ fy, f; in which the induced velocities Ve Vyo V, occur. We
would then not qnly need an expression for v, like (8.11) or (8.12) but
also similar expressions for Ve and vy. Therg would result three coupled
integral equations, roughly requiring nine times as much work to be

‘treated as the integral equation which we shall handle in this chapter.

If o, and ¥ would be of 0(e), (9.3) would be satisfied, but in that case
we could use the theory of chapter I. On the other hand, if ¥ would not
be small enough for the theory of chapter I to be used, o* might still
be small enough on the greater part of S for (9.3) to be reasonably
approximated. It is to those cases that we intend to apply the theory

of section 11. (A rapidly spinning boomerang with ¢ = 15° might be an

experimental-example). Thus we suppose that

Vr3/vrl f< 1 (9.4)

although ¢y may not be small compared to one radian.
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we tnen nave:

2 2 def

e1 ¥ Vi3 ™ (Veosy - W )sing + wy cosB v, - (9.5)
and
) -[(Vcos w—wx) cosB+WyslnB ]Y+V_s 1mj)-wz+vz def v,
sina N o 0+ === a°+ue o —
° ' v
e - e
(9.6)

which are the equivalents of (2.14) and (2.15). Hence we obtain:

vz 2 Vz )
fx ~ +uc(a° + ae +-‘-,—)Ve(c:ze + -V—-)smB
vz 2 vz o~ ik
fy ~ -uc(ao + ae +T)Ve(ae + v—)cosﬁ
: e )
vz 2
fz 3 -uc(ao + ue + T)Ve o (9.8)

which is similar to (2.18) and (2.19).

Substitution of expression (8.11) or (8.12) for the induced velocity
vz(x,y,O) into (9.8) results in an integral equation for the load func-

tion fz(x,y). This integral equation can be numerically solved by the

collocation method outlined in §5.
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§10 General character of the integral equation and its solution.

In §4 we investigated the behaviour of the solution of the integral
equation of chapter I. In this section we will do the same for the

integral equation formed by (9.8) and (8.12).

Again we consider the simple two-dimensional case where the region S
is a strip in y-direction: -1 < x < |, and where the physical situation
does not depend on y. In this case (after integration with respect to

n) expression (8.12) for the induced velocity reduced to

£,(x) |siny| cosy +1 £,(8)

v (x) = + ¢ dg (10.1)
z 2uv 2mvV -1 x-g

If we use the abbreviations:

..fz N
L = 3
uv 2
Ve
c(a + a )—
pa— W b (10.2)
Ve
I+ic ]sinW[;;
Ve
T cosy
Q= v
“1+dc ISin¢|7$

o

we can write the integral equation for the two-dimensional case in the

form:
VRIG) |
L(x) = P(x) - Q(x) »- § = 4t (10.3)
-1
This is exactly the same form as ¢4.3), apd the observations made in §4
could be repeated here.

The limit case Q - « cannot occur since

'(12'= cT"cLo—sE + tleg y| > i|eg y] (10.4)
) e o
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On(the other hand, the limit case Q - 0 can be reached. Then (10.3) can

be approximated by the algebraic equation
L(x) = P(x) (10.5)

From (10.4) it is obvious that this approximation holds in any case for

values of Yy close to t-%, which is in agreement with (8.13).

We conclude that the solution of the integral equation (9.8) will behave
the same way as the one of chapter I, but that the leading'edge singu-
larity generally will have a decreasing intensity for increasing values
of the angle y. As far as the behaviour in y-direction in concerned, we

assume (4.21) to be valid again.

In the following sections we shall use the same series expansion for

the load function fz(x,y) as in chapter I.
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§11 The elementary induced velocities.

The integral equation formed by (9.8) and (8.11) or (8.12) will be
handled by the same methods that were used for the case Y=0 in §5 and
§6. In this section we shall deal with (8.11) rather than with (8.12),
since the latter expression for the induced velocity leads to somewhat
more complicated formulas [Hess, 1973, §17], and the numerical evalu-
ation of the elementary induced velocities in this case requires more
computing time than in the case where (8.11) is used [Hess, 1973, §25].

Both methods, however, yield identical numerical results.

For a circular region (8.11) takes the form

£ (x,y) +
v, (x,3,0) = 2—— 4+ L §
2|sinwl -1

1 +

1
f K‘p(x,y,im)bfz(&n)didn (11.1)

=3

with Kw(x,y,i,n) from (8.7). Here, like §5, we have replaced the origi-
nal quantities x, y, &, n, Vv, £ by the dimensionless onef‘(5.3) and
dropped the primes. As in chapter I, we shall use X', X, X and Y,
defined by (5.4).

Again the load function fz(g,n) is expanded in a series according to
(5.5) through (5.10). The‘induced velocity v, can be written as a sum
of elementary induced velocities vpl according to (5.11). Instead of

(5.12) we now have:

H (X)Gl(y) 1 +1 +¢l—n2
Vpl(x,y) =--P - i £ / -Kw(x,y.ayn)ﬂ (X‘)Gl(n)dadn
2|siny]| -1 _ Ao P

(11.2)

We integrate by parts with respect to &, and obtain for the integral in

(11.2):
€=+V1-n2
dn +
g==vY1-n

+1
I,1(%y,0) = _? —IK(x,y,s,n)Hp(X')cl(n}

+1 +VY1-n

+ f IK(x,Y,Em)—g—{Hp(X')Gl(n)}dgdn (11.3)

- 9g
[ s, .

with

193



COsSy

IK (X’Y’Esn) 2 2 5
[(x=&)“+(y-n)"]1* - (x-&)cosy

or . Y (11.4)
. cosy 1

IK*(X,y,X',n) =

[E-x) %721 - @X")eosy  Vi-n?

IK and K¢ are related by

Kw(x,y,i,n) E IK(x,¥,&,m) (1].5)
The first term in (11.3) vanishes for p > 1, for p=0 it equals:

E h, (n) . . )
IK*(X,y,-1,n)dn (11.6
-1  Vl-n '

Y E|

The second term in (11.3) equals:

&1 h, (n) }1 . fi_g_
IK*(X,y,X',n) dx' dn (11.7)
-1 V1-n® -1 dax’

The expansion of the integral with respect to X' in (11.7) near n=
y

contains a term

cosy

- < >1n|y_n| | (11.8)
— sin w dax'

Therefore we write (11.7) in the form

+1 +1

J by (M £ (X,y,n)dntg (X,y) jh (n)1n|y-n|dn (11.9)
-1
with
£ (X,y,n) = L e s )
P 7 Vq:;z -{ Ly, dx' o l-y2 sin w dx'“Xx taly=n
(11.10)
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cosy
g_(X,y) = - < > (11.10a)
P -y sin w dax’

The term (11.6) can be included in the expression for fp if p=0,

IK*(X,Y,‘l,ﬂ) » ‘ (I]'ll)
Yl-n :

In [Hess, 1973, §16] a derivation is given for fp in the limit n >y

' ~N
: cosy l1-cosy
fp(x,y,y) [( > {21n[2(]—x)/ ] + cosy ln( >}+

sin w l—y l+cosy

H (X) 1
+ (l+cos¢)wp-—2——— - [ ) ( > ] ] if p=1...M-1]
. /1-X 'X dax' /x! dax’ X-x'

: cosy l~cosy
fo(X,y,y) = [( 2( {Zln[Z(l-X)zv‘ 1 + cosy 1n< >}+
sin w l-y dax'

l+cosy

T l+cosy
.1 }

T+X if p = 0.

~
(11.12)

Here (11.11) has been taken into account. The integrals in (11.10) and

(11.12) have to be evaluated numerically. Now we can write v

p]. as.:
)L BEGO o )}
v (X»Y =+ h.(n)f (X,y,n)dn + g (X’Y)d (y
pl 2|Sin¢l 4r 1 1 p. P 1
(11.13)

where dl(y) is given by (6.13). The integral in (11.13) has to be eval-

uated numerically. We write it in the form

e =
'{ f + f }'f (X,y,-cosd®)sinl ¢ sind dv
o © P
vith o Larae

y = = cos®
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The integrand in (11.14) vanishes for §=0 and 9=7.

The integral equation can now be solved by the collocation method and
the resulting forces and torques acting on the winglet structure can be

calculated according to §7.

196



CHAPTER III

NUMERICAL INTEGRATIONS AND DISTRIBUTION OF PIVOTAL POINTS.

§12 The method of numerical integration.

This section deals with the method used to evaluate numerically certain
integrals occurring in the chapters I and II. For all of the integra-
tions we use one and the same method, which works as follows. The inte-
gral: o ‘

b

J £(x)dx | o(12.1)
a

has to be evaluated with an absolute tolerance §. The integration inter-
val [a,b] is divided into a number of subintervals. One such interval
[xo,x4], with X,~X = 4h, is divided into four equal pieces by the
points X|» Xps Xg. Simpson's rule, applied to the intervals [xo,x2] and

[xz,k4], yields:

%4

[ f(x)dx =

X
o

h(f +4f +2f +4f +f4) h f (E ) (12.2)

1
3 s

Bode's rule, applied to the interval [xo,x4], yields:

X4

=2
[ f(x)dx = G5 DOTE +32F +12f,432f +7€

X
o

-8

7.vi
4) 945 h' £ (52) (12.3)

where fi stands for f(xi), and x < < x, [Hildebrand, 1956].

» &
1 2
Subtracting (12.3) from (12.2) we obtain:

0 =

1 5.1v 8 7.vi
%5 h(f 4f +6f 4f +f4) 5 h™f (EI) + 945 h'f (62) (12.4)

Using the abbreviation:

D = £ ~4f +6f,~4f,+f, 2.5
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and neglecting the last term in (12.4), we have

1 ,5.1v 1 | .
'4—5' h™f (51) “Zg h D= m(XA XO)D (]2.6)
We demand that
In] < 189 (12.7)
|b-a|

a

for each of the intervals [xo,x4]. For then the absolute error in the
integral (12.1), as computed according to Simpson's rule (12.2) with

neglect of the last term, would be less than §, provided we may neglect
the last term in (12.4).

The integration procedure goes like this: If (12.7) is satisfied for
the interval [xo,x4], the integral over this interval is com?uted by
Bode's rule (12.3) with neglect of the last term. However, if (12.7)
is not satisfied, the interval [xo,xA] is divided into two halves, and
the process is repeated for each of these. By this method the fineness
of the division of the integration interval is allowed to vary widely

in different regions, depending on how strong the integrand there fluc-

tuates.

As to the integrals which have to be integrated numerically, we shall

first consider those of chapter I. In (6.12) these integrals occur:
e
{ f + f }-Sp(x,y,-coso)sinlﬂ sind d9, p=0...M-1, 1 = 1...N (12.8)
fo) (°] .

where (X,y) is successively each of the pivotal points. According to
(6.5) and (6.6) the functions Sp contain the functions fp, which in

turn contain the integrals

X-x

+1]
[ A1+ — H_(X')dX', p = 0...M-] (12.9)
-1 [F-x) 2yt P

according to (6.3). These integrals were written in a different form in

(6.16) . It is these integrals (12.9) which consume by far the greater
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part of the time needed to compute the integrands in (12.8). However,
the integrals (12.9) do not depend on 1. Therefore it is advantageous

to compute simultaneously the integrals (12.8) which differ only in 1.
Hence for each of the NM pivotal points (X,y) and for each value of p,
one subdivision of the integration interval 0 < § < m is used for the
computation of the set of integrals (12.8) with 1 = 1...N. For all of
the N integrands the condition (12.7) has to be satisfied simultaneously.
The integrals (12.9) have to be computed at each of the integration
points in the interval 0 < 9 < m with a tolerance that should be so
small that the tolerance requirement for the integrals (12.8) can be

satisfied.

We now consider the integrals in chapter II. In (11.14) we have the

integrals:

e .
-{ [+ f }-fp(x,y,-cosa)sinla sind d9, p=0...M-1, 1 = 1...N (12.10)
o © :

Accbrding to (11.10) the fp contain the integrals

+1 dH } .
[ IK*(X,y,X",n) —E ax', p = 0...M-1 ©(12.11)
-1 ax’

Here we can repeat the preceding paragraph, provided we replace (12.8)
by (12.10) and (12.9) by (12.11).

: fhe tolerances for each of the numerical integrations are determined

as follows. We start by setting a certain absolute tolerance, TOL, for
all of the elementary induced velocities vpl(xu’yv)' From this follow
the required tolerances for the "spanwise" integrals (12.8) and (12,10).
As to the "chordwise" integrals (12.9) and (12.11), their tolerances
will have to depend on the way they are contained in the "spanwise"
integrands of (12.8) and (12.10). On the one hand, if their tolerances
are taken too small, they will be computed with unnecessary accuracy,
and too much computing time is used. On the other hand, if their tol-
erances are taken too large, the "spanwise" integrands are computed
with insufficient accuracy. Then it might even be impossible to satisfy

the tolerance requirement for the spanwise integrations at all. If the
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absolute tolerance for a ''spanwise' integral i1s ¢ and the length oI The
integration interval is L, its integrand should be computed with an ab-
solute tolerance less than 8/L. We determine the tolerances of the
"chordwise" integrations in such a way that the resulting error in the
"spanwise" integrand is less that MTx8/L, where MT is a "margin of tol-
erance" with 0 < MT < 1. Actual calculations suggested that MT = .2 is

a reasonable choice.

The accuracy of the numerical solution to the integral equation is de-
termined mainly by these two factors: First, the number NM of terms in
the expansion for fz and the distribution of the NM pivotal points.
Seéondly, the accuracy of the numerical integrations. With our method
the second factor can be separated from the first one. In this our
method of integration is rather different from the one used by Multhopp
[1950]. There the spanwise integrations are performed by expanding the
integrands in as many interpolation functions as there are pivotal
points in spanwise direction. Thus the number of integration points for
all spanwise integrals is fixed and equal to N. Zandbergen, Labrujere
and Wouters [1967] adopt an intermediate method. They use a(N+1) -l
integration points, where a is a natural number, fixed for all spanwise

integrations. (See also [Labrujere and Zandbergen, 1973]).

200



§13 The distribution of the pivotal points.

It is clear that the theory outlined in the chapters I and II allows an
arbitrary distribution of pivotal points to be used, provided those

points occupy a rectangular lattice in (X,y)-space. They are denoted by.
(Xu,yv),_u =1]l...My v=1...N.-In this section we shall make a definite

choice for the distribution of pivotal points over the circular region
S. '

In ordinary lifting surface theory often Multhopp's distribution of
pivotal points is chosen. Multhopp's chordwise distribution is based on
the following assumptions [Multhopp, 1950]:

I. Two-dimensional flow.

II. Given is the shape of the airfoil, hence the induced velocity; to

be determined is the lift distribution.

III. The exact solution can be expanded in a (Birnbaum) series of M+l

terms.
And the following requirement:

IV. If M terms are used in the chordwise (Birnbaum) expansion of the
lift function, the first M moments of the lift distribution have

to be equal to those of the exact solution.

It can be shown that under these conditions the pivotal points

X = - = l... .
" cost, p=1...M (13.1)

have to be chosen in such a way that

M
i1+ I singd =0 (13.2)
=1 .

is satisfied for each of them. This leads to Multhopp's chordwise dis-

tribution of pivotal points:

¢ = ﬁ:; s H=1...M (13.3)
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Some critical remarks can be made:

12 Assumption III is essential. It is justified if in the Birnbaum ex-
pansion of the exact solution the sum of the (M+2)-th énd Higher
terms can be neglected with respect to the (M+!)-th term.

If the requirement stated in IV would be replaced by the following
(seemingly not less reasonable) requirement:

IV* The first M coefficients in the Birnbaum series have to be equal
to those of the exact solution,

we would easily find that the pivotal points should satisfy:
cosM@u =0, u=1...M (13.4)

This would lead to the symmetrical distribution:

(13.5)

u=1l...M

which is quite different from Multhopp's distribution (13.3).
3= The reasoning cannot be applied to airfoils with small aspect ratios

like, for instance, circular wings.

It is possible to set up a similar argument for our integral equation.
In our case not the induced velocity would be given but the functions
which in the sections 4, 5 and 10 have been denoted by P and Q. As sump-
tion IIT would be unreasonable here, since we know that our chordwise
expansion with the term }(m-¢) does not cofrespond to the behaviour of
the exact solution. This behaviour near the leading edge is known, it
depends on the function Q. For the two-dimensional case a reasonable
assumption, taking the place of III, might be made, concerning the ex-
pansion of the exact solution. It is clear that the "optimal" distri-
bution then would depend on the function Q. However, critical remarks
like those made for Multhopp's case could be made here as well. It seems
to us that there are no strong theoretical arguments in favor of any
particular distribution of pivotal points. Except perhaps that it would
be sensible to have a distribution which is more dense near the boundary

of the lifting surface, or in any region where sharp variations in the

lift distribution are expected.
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As to the chordwise distribution of pivotal points, actual calculations
[Hess, 1973, §24] possibly gave slight indications that, the smaller
the function Q, the more the points should be shifted towards the lead-
ing edge. We found that the symmetrical distribution:

Xu cos¢u, ¢u Wi ° M 1...M (13.6)
works satisfactorily. As to the spanwise distribution, we followed
Mul thopp [1950] and took.

v '
v, cose , ev=m s V= 1...N (13.7)

Zandbergen, Labrujere and Wouters [1967] have tried some other spanwise
distributions (for ordinary lifting surfaces), but no definite conclu-
sions as to an "optimal" distribution could be made. A distribution

based on (13.6) and (13.7) with N=6, M=6 is shown in fig. 13.1.

fig. 13.1. A possible distribution of pivotal points.
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The symmetry of the spanwise distribution (13.7) is important with re-

gard to the time consuming computation of the elementary induced veloc-—
ities. This symmetry allows us to reduce by a factor of 2 the number of

integrals which have to be computed numerically. A further reduction

could be obtained by making use of the symmetry in the chordwise dis-
tribution (13.6).
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CHAPTER 1V

SOME NUMERICAL AND EXPERIMENTAL RESULTS.

§14 Comparison with Van Spiegel's theory for circular wings.

It would be useful to check the correctness of the mathematical theories
developed in chapters I and II against other, independent, theories. This
is indeed feasible for the case y = 0. (¥ is the angle between the plane
of the winglet structure and the direction of the undisturbed flow.)
Van Spiegel [1959] has developed a linearized lifting surface theory for
ordinary circular wings, and has given some numerical results. It is
easy to adapt our computing program for the case § = 0 (called program B)
to ordinary lifting surfaces where the induced velocity v, is given.
However, because of the term }(7m-¢) instead of the customary termcotg @
in the chordwise expansion of the lift function, our theory is not par-
ticularly suited to be uéed for wings with little or no porosity. None-

~ theless a comparison with van Spiegel's results may be of interest.

We shall work with the dimensionless quantities defined by (5.3). Van
Spiegel [1959] gives numerical results for six cases, in which the shape

of the circular wing and hence the induced velocity is prescribed:

v_= -] )
A
v =X
2
2
Vz =X
. o2 . (14.1)
z y
Vz =y
v, = Xy J

For each of these cases numerical values are given for the components

Foz’ Tox’ Toy and Fox (defined in §7). Because of symmetry, in the first
four cases T = 0, in the last twocases F =0and T = 0, whereas
ox oz oy

F =0and T =0 in all six cases.
oy oz
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In table 14.1 van Spiegel's results [1959, p. 84/5] are compared with
those of our program B. The pivotal points were chosen according to
(13.6) and (13.7) with N=6, M=6 and N=8, M=8 respectively. The elemen-
tary induced velocities were computed with a tolerance TOL = .002. The
agreement appears to be good: the relative differences are of the order
of 17Z. This warrants a certain confidence as to fhe correctness of the
theory of chapter I within its own framework. We remark that an earlier
version of program B with a cotg }¢ term instead of }(m-9) yielded

results which agreed slightly better with van Spiegel's.

As to the drag component Fox (not listed in table 14.1), programByields
values which are roughly a factor of 2 higher than van Spiegel's. This
must be due to the fact that the suction forces acting on the leading

edge are not taken into account by our method.

case component van Spiegel Program B
6x6 8x8
v = -l F _/n +.8951 |  +.8836  +.8891
z oz :
=T /= -.4663 -.4661 -.4665
oy .
V. =X ' F _/u -.4663 -.4737 -.4702
z oz
-T /= -.2194 -.2196 -.2201
oy
2
v, =x Foz/n -.3755 -.3709 -.3730
-Toy/n -.0118 -.0116 -.0112
= 2 - - -
v, =y Foz/n .2213 .2186 .2198
=T /= +.0962 +.0958 +.0959
oy v
v, =Yy Tox/n ) -.1225 -.1211 -.1220
vV_ = xy T /n ~.0576 -.0590 -.0584
z _ ox

table 14.1. Comparison between van Spiegel [1959] and our program B.
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8§15 . Accuracy of numerical results.

In this section we consider the influence on the final numerical results
of A: the tolerance chosen for the elementary induced velocities, and B:
the distribution of pivotal points. Finally we compare the results of

the theory of chapter I (¢ = 0) with those of the theory of chapter II
(y # 0), for small angles y.

The examples which were calculated for this section are based on the
theoretical winglet structures described in §18. These correspond to
the experimental boomerangs used in the experiment described in.§17, in
particular to the boomefangs with 8 and 2 arms respectively, spinning
at a reduced rotational velocity Q = wa/V = 2. The computing programs
used for the numerical computations are called B and BC respectively;

B is based on the theory for ¢ = 0, and BC on the theory for y # O.

These programs were written in Algol and run on a Telefunken TR4 com—

puter.

A: the tolerance for the elementary induced velocities.

Here the pivotal points were chosen according to (13.6) and (13.7) with
N =6, M = 6. The "margin of tolerance" (see §12) was set as MT = .2
and the tolerance TOL for the elementary induced velocities was varied
from .1 to .001. Computations were made both for ¢ = 0° and for V¥ =_30ﬁ
It turns out that reducing TOL by a factor of 10 increases the computing
time t for the elementary induced velocities by a factor of 4 roughly.

Hence the following relation holds approximately:
t ~ 1oL70-® (15.1)

From the tables given by Hess [1973, §23] it can be inferred that the
relative errors in the computed six force and torque components are of

the order of 1Z for TOL = .02, and of the order of 0.1Z for TOL = .002.

B: the distribution of pivotal points.

Here a tolerance TOL = .002 was used, so that the errors due to inaccu-

racies of the integrations were of the order of 0.17 only. The compu-
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tations were made for ¥ = 0° (program B).

First we consider some chordwise distributions of pivotal points which

differ from (13.6). Instead we now take, just for experimental purposes:

T (u#e)m

X = - cos@u, Qu = S

. u=1...M (15.2)

with a variable parameter e. For e=0 (15.2) reduces to (13.6) again.
The spanwise distribution is taken according to (13.7). We choose N=6,
M=6 and e=-0.4, -0.2, 0, +0.2, +0.4 respectively. From the tables in
[Hess, 1973, $§24] it appears that for -0.4 < e < +0.2 the variations in
Foz and Tox are of the order of }%, while the variations 'in To are
larger: some 5% for the case with 8 arms and some 107 for the case with
2 arms. (The absolute variations are about the same in both cases). It
is difficult to draw definite conditions concerning an "optimal" dis-
tribution; although the results for the case with 2 arms at e=+.4
deviate so strongly from the corresponding results with the other e
values, that it seems advisable not to shift the points that far from
the leading edge, in particular if the function Q belonging to the prob-

lem (see §4) is small.

A not too unreasonable criterion as to the correctness of a numerical
solution might be based on the values of the cqefficients ap1 of the
expansion for the load function fz(x,y). The faster the absolute values
of the apl decrease with increasing p and 1, the smoother a solution
‘will be. A solution, strongly oscillating with a period corresponding

to that of a function Hp(X) or Gl(y) with p=M-1 or 1 =N, very probably
would not resemble the exact solution. Although one should be careful,
one might consider smoothness as a measure of quality for a solution.
For a smooth solution the absolute valués of the coefficients a 1 should
decrease suffiently fast with increasing p and 1. We take as a - somewhat

arbitrary -measure of quality the quantity:

—def 1 M1 X |
a===gx I ¢ (p*D) 1]a 1| (15.3)
p=0 1=1 P

A smaller a would mean a smoother and hence "better" solution.
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For both 8 arms and 2 arms a is minimal for e =~ -0.1 [Hess, 1973, §24].
For cases with higher values of Q, a is minimal for e > 0. This may be
an indication that for an "optimal" distribution the pivotal points
should be shifted the more towards the leading edge the smaller the

function Q.

From now on we shall use distributions with e=0 exclusi?ely, i.e. dis-
tributions éccording to (13.6) and (13.7). '

It is remarkable that the coefficients apl generally appear to have
significantly higher absolute values in cases with odd M than in cases
with even M. This is demonstrated by table 24.5 in [Hess, 1973, %24]
which contains values for a, as defined by (15.3). It seems therefére
advisable to take the chordwise number of pivotal points, M, even.

The numerical differences between the cases with N=6, M=6 and N=8,
M=8 and N=8, M=6 areb- of the order of 1% for the components Foz and
'1'ox and somewhat greater for the component Toy: roughly 27 for the case
with 8 arms and 10%Z for the case with 2 arms. (The absolute differences
s F and T

x’ "oy oz
show larger relative differences but their absolute values are rather

are roughly the same in both cases). The components Fo

small.

For cases with N=M the computing time t for the elementary induced
velocities appears to be proportional to the third power of the number
of pivotal points. A closer inspection [Hess, 1973, £24] learns that

the following relation holds apbroximately

t ~Nace (15.4)
The number of integration points for a spanwise integration appears to
be greater for elementary induced velocities associated with higher
values of p and pivotal points closer to the edge of S. The computing
program B with TOL = .002 and N=8, M=8 for instance leads to numbers
of integration points varying from 7 (lowest possible number) to 131.
Generally the pivotal points with v=1 and u=1 or M require the greatest

number of integration points. This is true for program CB as well.
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C: comparison between programs B and CB for small aﬁgles v,

If the elementary induced velocities computed for ¢ = 10° and for v =5°
by program CB are extrapolated to ¥ = 0°, the extrapolated values are
in good agreement with the elementary induced velocities for ¢ = 0° as
computed by program B. This shows that for Y >~ 0 the results of program
CB would approach those of program B with ¢ = 0°.

For program CB we found that the computing time t for the -elementary

induced velocities satisfies the approximate relation:
. -1 :
t ~ |siny| (15.5)

Although the theory of chapter I was developed for the case ¥ =0, it

can also be applied to cases with small values of ¥ by taking, instead
of W =0,
"z

W= -V siny (15.6)

in (2.15). (cf. (9.6) with Wz==0.) Thus, instead of the fluid having

a small velocity in z-direction, the winglet structure as a whole has
the opposite'veloéity. The differences between the results of the
programs B and CB are then exclusively due to the difference in the
direction of the undisturbed flow with respect to the plane of S. With
a vorticity representation in mind, we could say that in the theory of
chapter I (program B) the ffee vorticity which is released from the
upstream part of S is carried with the undisturbed flow along S, and,
remaining in the (x,y)-plane, along the downstream part of the winglets.
In the theory of chapter II (program CB) however, the free vorticity is
carried with the undisturbed flow at an angle y relative to the plane

of S, so that hardly any vorticity passes close to the trailing edge of
S. On this basis we would expect the computed lift function in the down-
stream part of S to be smaller according to B than according to CB. This
is indeed confirmed by the numerical results [Hess, 1973, §25], computed
with TOL = .002. At ¢ = 5°, for instance, and for 8 arms, Foz.is 57 :
lower, Tox 16Z lower apd Toy 9% higher according to B than according to
CB. For 2 arms the corresponding differences are respectively 1%, 4%

and 12%. At ¢ = 2}° the differences are smaller, at y = lOé greater.
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It might be inferred that it would not be justified to use program B
for cases with |¢| greater than a few degrees. However, we cannot be
sure that program CB would give more reliabie results, becausé the com-
puted induced velocities may well be such that the fluid is deflected
over considerable aﬁgles from its original direction of flow. In such
cases a linearized theofy cannot be justified anyway, although the re-
sults might still be reasonable. Let us consider an example. For ¢ = 0°,
5° or 10° the computed induced velocity v, is such that on a consider-
able part of S the fluid is deflected by an angle of about -10° for the
case with 8 arms and about -5  for the case.with 2 arms. It might there-—
fore be possible that the case with 8 arms at ¢ = 10° (or 2 arms at

% = 5°) could be handled better by program B than by program CB. This
would be a simple way of roughly taking deviations from linearity into
consideration. We shall, however, adhere to the linearized theory, and

let the free vorticity drift in the direction of the undisturbed flow.
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§16 Pictures of some lift distributions.

This section shows twelve computer graphs (fig. 16.1 and 16.2) which
represent picturés of theoretical 1lift distributions computed for the

wihglet structures of §18. The cases chosen are those for which:

n=28, 2
v =0, 15 (16.1)
=1, 2, 5
(n = number of arms, 2 = wa/V). The computations were made by program B
(¢ = 0°) and program CB (¢ = 150) with N=6, M=6, TOL =.02.

The graphs were produced in the following way. The circular region Swas
devided into 50 slices of equal width by cuts parallel to the x-direc-
tion. Each of the 49 "chords" again was devided into 50 equal pieces by
51 points including the endpoints. The lift function was computed at
these points, and for each "chord" a graph was made by drawing a broken
line. There resulted 49 graphs which together constitute a picture of
the 1ift distribution on S.

In the pictures, the undisturbed flow is from the left to the right,

and the boomerang's rotation is counterclockwise.

" The pictures for 2 arms (fig. 16.2) show that an appreciable peak at
the leading edge of S appears only for ¢ = 0°,'Q = 5. This suggests that
for two-armed boomerangs the }(n—=p) term in the chordwise expansion of
the load function could be omitted without much trouble. Even smoother
solutions might be obtained this way, as long as Q would not become too

great; see §24 for a comparison.

The small-scale undulations in the graphs probably are partly artefacts.
They might be altered by a different choice for the distribution of piv-

otal points, or by a different choice for N and M.
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fig. 16.1 Theoretical lift distributions for 8-armed boomerang,
computed with N=6, M=6.
Top row: § = 0°, bottom row: ¥ = 15°. From left to right: @ = 1,2,5.

Undisturbed flow from left to right, boomerang's rotation counter-—
clockwise. .

Vertical scale at right corresponds to load function fz(x,y) =1."
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fig. 16.2 Theoretical lift distributions for 2-armgd boomerang,

computed with N=6, M=6.

Top row: § = 0°, bottom row: ¥ = 15°. From left to right: Q = 1,2,5.
Undisturbed flow from left to right, boomerang's rotation counter-
clockwise.

Vertical scale at right corresponds to load function fz(x,y) = 1. .
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$17 an experiment.

In order to test the validity of the winglet model, an experiment was
carried out in which time-averages were measured of the forces and
torques on experimental boomerangs..This section describes. the experi- ..
mental set-up, §18 deals with the boomerang arms used, and in’§19vthe
experimental results are given and compared with theory. The boomerangs:
used in this expeiiment (see fig. 17.1) consist of 8, 4 or 2 idenﬁical
arms fixed together by two steel flanges. The boomerang is attached to

a shaft through its geometrical centre (= centre of mass), by which it
can be driven at certain angular velocities, while being towed under

water at certain linear velocities.

fig. 17.1. Measuring apparatus with 8-armed boomerang in the position

¥ = 30° (without water).

215



A schematic representation of the measuring apparatus is shown in fig.
17.2. The boomerang (@ 50 cm.) with its shaft together with the motor
drive forms one unit, B. The forces exerted by the water on this body
are determined by measuring the forces between unit B and the towing
wagon which moves at a u<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>